| 2 | 4 | |||
Jak z tej postaci | dojść do tej | |||
| 4√x−1 | √x−1 |
| 1 | ||
Zbadać ciągłość funkcji f(x) = x + | ||
| x |
| x | b | |||
Znaleźć granicę lewostronną i prawostronną funkcji f(x) = | * [ | ] w punkcie x = 0. | ||
| a | x |
| 1 | a3+a | |||
log[x−a(1−a)−0,5]−0,5log(1+ | )−log√ | −a2( w ostatnim wyrazie calosc jest | ||
| a | a+1 |
| 1 | (3a−b)(a2+ab)−1 | 4 | 1 | |||||
1+logx= | log[b− | ]− | logb+ | log(a3−ab2) | ||||
| 3 | b−2 | 3 | 3 |
| a3 | b3 | ||
+ | ≥ a2 + b2. | ||
| b | a |
| (−1+i)(1−3i) | i−3 | ||
+ 4i = .... = | + 4i = | ||
| i−2 | −5 |
| ln(n) | ||
Zbadać zbieżność oo∑n=1 (−1)n * | ||
| n |
| ex+Δx−ex | ||
lim Δx→0 | ||
| Δx |
| ln(x+Δx)−ln(x) | ||
lim Δx→0 | ||
| Δx |
| sin(x+Δx)−sin(x) | ||
lim Δx→0 | ||
| Δx |
| cos(x+Δx)−cos(x) | ||
lim Δx→0 | ||
| Δx |
| tan(x+Δx)−tan(x) | ||
lim Δx→0 | ||
| Δx |
| (x+Δx)n−xn | ||
lim Δx→0 | n∊ℕ | |
| Δx |
| √x+Δx−√x | ||
lim Δx→0 | ||
| Δx |