8 | ||
y= − | (x+C)24 | |
3 |
1 | ||
sorry ....na poczatku jest : − | ||
3 |
1 | ||
Po przerzuceniu − | y sinx na drugą stronę i wyciągnięciu wspólnego czynnika | |
3 |
1 | ||
y'− | ysin(x)=−y4sin(x) | |
3 |
1 | ||
y'= | ysin(x)−y4sin(x) | |
3 |
1 | ||
y'=( | y−y4)sin(x) | |
3 |
dy | 1 | ||
=( | y−y4)sin(x) | ||
dx | 3 |
3dy | |
=sin(x)dx | |
y−3y4 |
3 | |
=sin(x)dx | |
y(1−3y3) |
3 | |
=sin(x)dx | |
y(1−3√3y)(1+3√3y+3√9y2) |
A | B | Cy+D | |||
+ | + | ||||
y | 1−3√3y | 1+3√3y+3√9y2) |
3y2 | ||
∫ | dy | |
y3(1−3y3) |
dt | ||
∫ | dt | |
t(1−3t) |
A | B | 1 | |||
+ | = | ||||
t | 1−3t | t(1−3t) |
1 | 3 | 1 | |||
+ | = | ||||
t | 1−3t | t(1−3t) |
dt | 1 | −3 | ||||
∫ | dt=∫ | dt−∫ | dt | |||
t(1−3t) | t | 1−3t |
dt | ||
∫ | dt=ln|t|−ln|1−3t| | |
t(1−3t) |
dt | t | |||
∫ | dt=ln| | | | ||
t(1−3t) | 1−3t |
3y2 | y3 | |||
∫ | dy=ln| | | | ||
y3(1−3y3) | 1−3y3 |
y3 | ||
ln| | |=−cos(x)+C | |
1−3y3 |
y3 | |
=Ce−cos(x) | |
1−3y3 |
1−3y3 | 1 | ||
= | |||
y3 | Ce−cos(x) |
1 | 1 | ||
−3= | |||
y3 | Ce−cos(x) |
1 | 1 | ||
=3+ | |||
y3 | Ce−cos(x) |
1 | 3Ce−cos(x)+1 | ||
= | |||
y3 | Ce−cos(x) |
1 | 3C+ecos(x) | ||
= | |||
y3 | C |
C | ||
y3= | ||
3C+ecos(x) |