| 3n2−6n+15 | ||
Zbadaj monotoniczność i ograniczoność ciągu o wyrazie gólnym an= | ||
| −n2+2n−5 |
| x+1 | ||
1) | ||
| x3+x2−4 |
| x2+3x−4 | ||
2) | ||
| x2−5x+1 |
| x3+3x2−4x−2 | ||
3) | ||
| x+1 |
| 9 | 1 | 3 | ||||
x[x+ | −12*√2]+(x−√ | )2−(x+2)(x−2)>(x+√25)2−( | )−2 | |||
| 2 | 9 | 2√2 |
| x−2 | ||
a) f(x)= | ||
| x+1 |
| x2−2x−3 | ||
b) f(x)= | ||
| x2−x−6 |
| (n+1)!−n! | n!(n+1)!−n! | |||
lim | =lim | =
| ||
| (n+1)!+n! | n!(n+1)!+n! |
| n![(n+1)!−n!] | ||
lim | =limnn+2=11=1
| |
| n![(n+1)!+n!] |