x | ||
f(x)= | ||
3 + x3 |
x | x3 | x | 1 | ||||||||||||||||||||||
= | = | = | |||||||||||||||||||||||
3 + x3 |
| 3 |
|
x | x3 | |||
= | ∑ (− | )3 = ∑ 3−n−1 * (−1)n * x3n+1 | ||
3 | 3 |
⎧ | x=1+t | ||
Znaleźć równanie płaszczyzny H zawierającej punkt P(2,3,1) i L | ⎨ | y=2−t | |
⎩ | z=1+2t |
1 | ||
Oblicz całkę oznaczoną w granicach (0,2) ∫ | . | |
√4x−x2 |
a2−b2 | sin(α−β) | |||
a, b, c, a miarami kątów α, β, γ, : | = | |||
c2 | sinγ |
1+3n−1−21−n | ||
a) ∞∑n=1 | ||
2n*3n−2 |
3n−2*en−1 | ||
b) ∞∑n=2 | ||
22n |
(−1)n−πn+1 | ||
c) ∞∑n=1 | ||
4n |
5x−3 | ||
F(x) = | x0 =−1 | |
x+1 |