| nn | (n+1)n−1 | |||
1)an= | I wychodzi mi tutaj | I nie mam pojęcia co z tym zrobić 🙄 | ||
| n! | (n+1)! |
| 1 | ||
(x−1)*f(x)+f(1/x)= | ||
| x−1 |
| 1 | ||
Obliczam f(1/x) . Wstawiam do rownania w miejsce x | ||
| x |
| 1 | ||
∫ | ||
| (2x2+x+1)2 |
| log2 (2−n +3−n +6{−n} | ||
lim n−>∞ | ||
| n) |
| 1−2+3−4+...+(−2n) | ||
lim n−>∞ | ||
| √n2+1 |
| 1 | x | |||
f(x)+3*f( | )= | |||
| x | x−1 |
| 2−i | ||
Mam pytanko do liczb zespolonych. Mam na przykład dzielenie: | . | |
| 1+i |
| f(x)+f(−x) | ||
g(x)= | ||
| 2 |
| |x| | ||
a)f(x)= | x≠0 | |
| x |
| 1 | 1 | 1 | ||||
(x+y+z)( | + | + | )≥9 | |||
| x | y | z |
| x | x | y | y | z | z | |||||||
1+ | + | + | +1+ | + | + | +1≥9 | ||||||
| y | z | x | z | x | y |
| x | y | y | z | x | z | |||||||
3+( | + | )+( | + | )+ | + | )≥9 | ||||||
| y | x | z | y | z | x |
| 1 | 1 | 1 | ||||
Dla dowolnych dodatnich a,b c : (za2+b2+c2)( | + | + | )≥9 | |||
| ab | bc | ac |
| a2 | b2 | c2 | a | b | a | c | b | c | |||||||||
+ | + | + | + | + | + | + | + | ≥9 | |||||||||
| bc | ac | ab | b | a | c | a | c | b |
| a2 | c2 | |||
Dla dowolnych dodatnich liczb a,b c: | +b2}{ac}+ | ≥3 | ||
| bc | ab |
| x+y+z | |
≥3√x*y*z | |
| 3 |
| (a2/bc)+(b2/ac)+c2/(ab) | a2 | b2 | c2 | ||||
≥3√ | * | * | ≥1 | ||||
| 3 | bc | ac | ab |
| a+b+c | ||
Dla dowolnych dodatnich liczb a,b,c: | ≥3√a*b*c | |
| 3 |