1 | ||
(x−1)*f(x)+f(1/x)= | ||
x−1 |
1 | ||
Obliczam f(1/x) . Wstawiam do rownania w miejsce x | ||
x |
1 | ||
f(x)*x− f(x)+f(1/x)= | ||
x−1 |
1 | x | |||
f(1/x)* | −f(1/x)+f(x)= | |||
x | 1−x |
1 | x | |||
f(1/x)[ | −1]+f(x)= | |||
x | 1−x |
1−x | x | |||
f(1/x)* | +f(x)= | |||
x | 1−x |
1−x | x | |||
f(1/x)* | = | −f(x) stad | ||
x | 1−x |
x2 | x | |||
f(1/x)= | −f(x)* | |||
(1−x)2 | 1−x |
1 | x2 | ||
− | = | ||
x−1 | (1−x)2 |
−x2+x−1 | x2−x+1 | |||
musze dostac albo | = − | |||
(x−1)2 | (x−1)2 |
x2 | x | 1 | ||||
f(x)*x−f(x)+ | −f(x)* | = | ||||
(1−x)2 | 1−x | x−1 |
x | 1 | x2 | ||||
f(x)[x−1− | ]= | − | ||||
1−x | x−1 | (1−x)2 |
x2−x+1 | ||
Prawa strona juz obliczona wyszlo mi z tego ze − | ||
(x−1)2 |
x | x(1−x)−1(1−x)−x | x−x2−1+x−x | −x2+x−1 | |||||
x−1− | = | = | = | = | ||||
1−x | 1−x | 1−x | 1−x |
x2−x+1 | ||
− | ||
x−1 |
−(x2−x+1) | x−1 | 1 | ||||
stad f(x)= | * | = | ||||
(x−1)2 | −(x2−x+1) | x−1 |
1 | ||
f(x)= | ||
x−1 |
1 | 1 | 1 | 1 | |||||||||||||||||
(x−1)f(x)+f( | )=(x−1)* | + | =1+ | = | ||||||||||||||||
x | x−1 |
|
|
x | 1−x+x | 1 | 1 | 1 | ||||||
=1+ | = | = | =− | ≠ | ||||||
1−x | 1−x | 1−x | x−1 | x−1 |