| x2 − 16 | ||
f(x) = | ||
| x2 − 25 |
| −18x | ||
f'(x) = | ||
| (x2 − 25)2 |
| −18(x2 − 25)2 + 72x2(x2 − 25) | ||
f"(x) = | ||
| (x2 − 25)4 |
| x2 − 16 | ||
limx→4 | =
| |
| x2 − 25 |
| a+c | a+b+c+d | b+d | ||||
> | > | |||||
| 2 | 4 | 2 |
| n2 + 2 * 1 | n2 + 2 * 2 | |||
an = | + | + | ||
| 2n3 + 1 * 1 | 2n3 + 2 * 2 |
| n2 + 2 * 3 | n2 + 2 * n | ||
+ ... + | |||
| 2n3 + 3 * 3 | 2n3 + n2 |
| 4 | ||
Proszę o rozwiązanie nierówności: | ≤ 2 | |
| x−3 |
| √x−8 | ||
lim x−>64 | może ktoś to rozwiązać, mnożne przez sprężenie ale później nie | |
| 3√x−4 |
| 1+2+...+n | (1+n)*n2 | |||
limn→∞ | =limn→∞ | =limn→∞U{n+n2}{ | ||
| n2 | n2 |
| n2 | 1n+1 | 1 | ||||
2n2}=limn→∞ | ( | )= | ||||
| n2 | 2 | 2 |
| 1+2+...+n | (1+n)*n2 | |||
limn→∞ | =limn→∞ | =limn→∞U{n+n2}{ | ||
| n2 | n2 |
| n2 | 1n+1 | 1 | ||||
2n2}=limn→∞ | ( | )= | ||||
| n2 | 2 | 2 |
| 1 | 3n | |||
limn→∞( | *(−1)n− | )=0−0,5=−0,5 | ||
| 2n | 6n+1 |
| 1 | ||
limn→∞( | *(−1)n)=0 | |
| 2n |
| 3n | n | 3 | 1 | |||||
limn→∞ | =limn→∞ | * | = | |||||
| 6n+1 | n | 6+1n | 2 |
| 2π | ||
Oblicz cos ( | + 288π ) | |
| 3 |
| 2π | 2π | 1 | ||||
W odpowiedziach jest tak: cos ( | + 288π ) = cos | = − | ||||
| 3 | 3 | 2 |
| x4 | x3 | |||
f(x) = | + | − 3x2 + 2x − 1 D=R
| ||
| 12 | 6 |
| x4 | x3 | |||
f'(x) = − | − | − 6x + 2 D'=R
| ||
| 144 | 36 |
| x4 | x3 | |||
f"(x) = | + | − 6 D"=R
| ||
| 20736 | 1296 |