e4x−e−x | dt | |||
∫ | dx= |t=ex dt=exdx dx= | | = | ||
4 | ex |
e5x−1 | t5−1 | t5−1 | 1 | t5−1 | ||||||
∫ | dx=∫ | dt=∫ | dt= | ∫ | dt= | |||||
4ex | 4t | 4t | 4 | t |
1 | 1 | 1 | t5 | |||||
= | ∫(t4−t−1)dt= | (∫t4dt−t−1dt)= | ( | −ln|t|+C)= | ||||
4 | 4 | 4 | 5 |
t5 | ln|t| | e5x | 5ln|ex| | e5x−5x | ||||||
= | − | +C= | − | +C= | +C | |||||
20 | 4 | 20 | 20 | 20 |
1 | ||
Mam sprawdzić zbieżność szeregu ∑(−1)n | . | |
n2 + n |
1 | 1 | 1n | 1 | |||||
∑|(−1)n | | = ∑(1)n | = ∑ | = ∑ | ≤ | ||||
n2 + n | n2 + n | n2 + n | n2 + n |
1 | ||
∑ | ||
n2 |
ex | ||
lim x−−>∞ | ||
x2−x |
2x | ||
Może mi ktoś pomóc z całką ∫ | dx | |
√1−4x |
2x | ||
∫ | dx | |
√1−4x |