| P1 | P1 | |||
P1= π r2 => r2= | => r= √ | |||
| π | π |
| P2 | ||
P2= 2πr(r+h) => P2= 2πr2+2πrh => h= | −r | |
| 2πr |
| P1 | P2 | |||
V= | * π * ( | −r)= .... potem pod r podstawiam to co wyżej i wychodzi mi | ||
| π | 2πr |
| 1 | P1 | ||
* (P2−P1)√ | |||
| 2 | π |
| 1 | P1 | ||
* (P2−2P1)√ | |||
| 2 | π |
| P2 | P2 | |||
V=P1 ( | −r) = P1( | −1)•r = | ||
| 2πr | 2πr2 |
| P2 | P2−2P1 | P2−2P1 | ||||
= P1( | −1)•r = P1( | )•r=( | )•r | |||
| 2P1 | 2P1 | 2 |