sin22x | ||
a) sin4x + cos4x = 1 − | ||
2 |
π | ||
b) sinxtg(x + | ) + 2cosx = sinx | |
2 |
2 | ||
c) tg2x = | ||
ctgx − tgx |
1−tg2x | ||
d) cos2x = | ||
1+tg2x |
sin(x+y) | ||
e) tgx + tgy = | ||
cosxcosy |
sin(y−x) | ||
f) ctgx − ctgy = | ||
sinxsiny |
10x | ||
f(x)= | , x∊(0,10) | |
x2+1 |
π | π | |||
a) cosxsin( | − x) + sin(−x)cos( | − x) | ||
2 | 2 |
π | π | |||
b) cos(−x)sin( | + x) + sin(π − x)cos( | + x) | ||
2 | 2 |
3π | 3π | |||
c) cos( | − x)cos(π − x) − sin(π + x)sin( | + x) | ||
2 | 2 |