ex | ||
Odpowiedź to | ||
√1+e2x |
ex ( 2*√1+e2x+1 | ||
Ja utknęłam przy | ||
ex * 2√1+e2x+2(1+e2x ) |
cos2x | ||
Muszę obliczyć pochodną z | ||
1+x2 |
sin1/2(n+1)x * sin1/2nx | ||
sinx+sin2x+...+sin(nx) = | ||
siin1/2x |
cos1/2(n+1)x * sin1/2nx | ||
cosx+cos2x+...+cos(nx) = | ||
siin1/2x |
1 | 1 | 1 | ||||
Lim n→∞ (1+ | )(1+ | )...(1+ | ) | |||
4 | 16 | 22n |
(d+e)g*l*m | ||
za całke i jak ? wynik to | ||
2 |
d*(l−x)*m*g] | e*x*m*g | ||
+ | |||
l | l |
nn | (n+1)n+1 | nn+1+1 | nn * n1 + 1 | ||||
= | = | = | no i to | ||||
n! | (n+1)! | (n+1)! | (n+1)! |