Witam wszystkich, czy dobrze zrobiłam ten przykład:
Zbadaj monotoniczność ciągu:
| 1+2+...+n | ||
a) | ||
| (n+1)! |
| a1+an | ||
Sn= | *n | |
| 2 |
| 1+n | n2+n | |||
Sn= | *n= | |||
| 2 | 2 |
| ||||||||
an= | ||||||||
| (n+1)! |
| an+1 |
| (n+1)! | |||||||||
= | * | = | |||||||||
| an | ((n+1)+1)! |
|
| (n+1)! |
| |||||||||||||||
* | = | = | |||||||||||||||
| (n+1)!(n+2) |
|
|
| n2+3n+2 | 2 | n2+3n+2 | |||
* | = | ||||
| 2 | (n2+n)(n+2) | (n2+n)(n+2) |
| n2+3n+2 | ||
czyli dla każdego n∊N spejniającego | >1 ciąg jest rosnący | |
| (n2+n)(n+2) |
| n2+3n+2 | ||
więc | >1 | |
| (n2+n)(n+2) |
| n(n+1) | 1 | 1 | ||||
an = | * | = | ||||
| 2 | (n+1)! | 2(n−1)! |
| 1 | ||
an+1 = | ||
| 2(n)! |
| an+1 | 1 | 2(n−1)! | 1 | ||||
= | * | = | |||||
| an | 2(n)! | 1 | n |
| 1 | |
<1 | |
| n |
| an+1 | |
<1 ciąg malejący | |
| an |