1+2+...+n | ||
a) | ||
(n+1)! |
a1+an | ||
Sn= | *n | |
2 |
1+n | n2+n | |||
Sn= | *n= | |||
2 | 2 |
| ||||||||
an= | ||||||||
(n+1)! |
an+1 |
| (n+1)! | |||||||||
= | * | = | |||||||||
an | ((n+1)+1)! |
|
| (n+1)! |
| |||||||||||||||
* | = | = | |||||||||||||||
(n+1)!(n+2) |
|
|
n2+3n+2 | 2 | n2+3n+2 | |||
* | = | ||||
2 | (n2+n)(n+2) | (n2+n)(n+2) |
n2+3n+2 | ||
czyli dla każdego n∊N spejniającego | >1 ciąg jest rosnący | |
(n2+n)(n+2) |
n2+3n+2 | ||
więc | >1 | |
(n2+n)(n+2) |
n(n+1) | 1 | 1 | ||||
an = | * | = | ||||
2 | (n+1)! | 2(n−1)! |
1 | ||
an+1 = | ||
2(n)! |
an+1 | 1 | 2(n−1)! | 1 | ||||
= | * | = | |||||
an | 2(n)! | 1 | n |
1 | |
<1 | |
n |
an+1 | |
<1 ciąg malejący | |
an |