| 3√5 | π | |||
a/sinx+cosx= | x∊(0 ; | ) | ||
| 5 | 2 |
| π | √5 | 3π | ||||
b/cos (x+ | )= | x∊(π ; | ) | |||
| 4 | 5 | 2 |
| x−2 | x2−1 | 1 | ||||
a) | + | − | ||||
| x2−4x | x2−8x+16 | 2x |
| x2−1 | x2−3 | 1 | ||||
b) | − | − | ||||
| x2−5x | x2−10x+25 | 5−x |
| 2x | x | 1 | ||||
c) | − | − | ||||
| x2−4x+4 | x2−2x | x+1 |
| 5x | 4 | 1 | ||||
d) | − | + | ||||
| x2−6x+9 | x−3 | x2+3x |
| x−1 | x+1 | x2−4 | ||||
a) | − | + | ||||
| 2x+3 | 3−2x | 4x2−9 |
| 2x2−1 | x+2 | x+1 | ||||
b) | + | − | ||||
| 4−x2 | x−2 | x+2 |
| 2x2−3x | x+2 | |||
c) | − | +1 | ||
| x2−6x+9 | x−3 |
| x+2 | 4 | x+1 | ||||
d) | − | − | ||||
| x−1 | x2−2x+1 | x |
| x−1 | x | |||
− | ≤0 | |||
| x+2 | 2x+1 |
| 1 | ||
1. Na prostej o równaniu y= | x wyznacz punkty P i P' odległe o 4 od punktu R=(4,5). | |
| 2 |
| 1 | ||
kąt α jest ostry i sinα= | Wówczas: | |
| 4 |
| 3 | ||
a) cosα< | ||
| 4 |
| 3 | ||
b) cosα= | ||
| 4 |
| √13 | ||
c) cosα= | ||
| 4 |
| √13 | ||
d) cosα> | ||
| 4 |