| 1 | 1 | |||
a)f(x)=(2x2 − | x − | )3 | ||
| 2 | x |
| 1 | 1 | 1 | ||||
f'(x)=3(2x2− | x −x−1)2 * (2x2 − | x−x−1)'=3(2x2− | x −x−1)2 | |||
| 2 | 2 | 2 |
| 1 | ||
*(4x− | +x−2) | |
| 2 |
?
| x | ||
1.Uzasadnij, ze zbiorem wartosci funkcji f(x) = | jest (−1,1) | |
| 1+IxI |
| π | ||
Dana jest liczba sin(cos | ) Zatem: | |
| 3 |
| √3 | π | |||
A. | < sin(cos | ) < 1 | ||
| 2 | 3 |
| √2 | π | √3 | ||||
B. | < sin(cos | ) < | ||||
| 2 | 3 | 2 |
| 1 | π | √2 | ||||
C. | < sin(cos | ) < | ||||
| 2 | 3 | 2 |
| π | 1 | |||
D> 0 < sin(cos | ) < | |||
| 3 | 2 |
| π | ||
Dana jest liczba:sin(cos | ) Zatem: | |
| 3 |
| √3 | π | |||
A. | < sin(cos | ) < 1 | ||
| 2 | 3 |
| √2 | π | √3 | ||||
B. | < sin(cos | ) < | ||||
| 2 | 3 | 2 |
| 1 | π | √2 | ||||
C. | < sin(cos | ) < | ||||
| 2 | 3 | 2 |
| π | 1 | |||
D. 0 < sin(cos | ) < | |||
| 3 | 2 |
| m | ||
log0,5(x+4)= | ||
| m+1 |
| m | ||
0,5 | =x+4 | |
| m+1 |
| m | ||
0,5 | −4=x | |
| m+1 |