| x1+ x2 | ||
1x1+1x2= | ||
| x1x2 |
| n+1 | ||
∑ | ||
| n3−n+1 |
| (n+1)!−n! | (n−1)!*n(n+1)−(n−1)!*n | ||
= | = | ||
| )n−1)! | (n−1)! |
| 2 | ||
Jednym z rozwiązań równania | = |x|+m z niewiadomą x i parametrem m jest liczba −4. | |
| |x|−2 |
| π | ||
2sin2(2x + | ) − 1 = 0 | |
| 2 |
| π | 1 | |||
sin2(2x + | ) = | |||
| 2 | 2 |
| π | √2 | |||
|sin(2x + | )| = | |||
| 2 | 2 |
| π | √2 | π | √2 | |||||
sin(2x + | ) = | v sin(2x + | ) = | |||||
| 2 | 2 | 2 | 2 |
| π | π | π | π | |||||
2x + | = | + 2kπ v 2x + | = − | + 2kπ | ||||
| 2 | 4 | 2 | 4 |
| π | 3π | |||
2x = − | + 2kπ v 2x = − | + 2kπ | ||
| 4 | 4 |