| π | ||
2sin2(2x + | ) − 1 = 0 | |
| 2 |
| π | 1 | |||
sin2(2x + | ) = | |||
| 2 | 2 |
| π | √2 | |||
|sin(2x + | )| = | |||
| 2 | 2 |
| π | √2 | π | √2 | |||||
sin(2x + | ) = | v sin(2x + | ) = | |||||
| 2 | 2 | 2 | 2 |
| π | π | π | π | |||||
2x + | = | + 2kπ v 2x + | = − | + 2kπ | ||||
| 2 | 4 | 2 | 4 |
| π | 3π | |||
2x = − | + 2kπ v 2x = − | + 2kπ | ||
| 4 | 4 |
| √2 | ||
oczywiście ma, popraw tylko w drugiej równości na − | ||
| 2 |
| π | 3π | |||
x = − | +kπ ∨ x = − | +kπ | ||
| 8 | 8 |