| 1 | ||
1. tg2xcosx+4cos3x=ctgxsinx+ | ||
| cosx |
| sin2x | 1 | ||
cosx+4cos3x=cosx+ | |||
| cos2x | cosx |
| 1−cos2x | 1+cos2x | ||
+4cos3x= | |||
| cosx | cosx |
| 1−cos2x−(1+cos2x) | |
+4cos3x=0 | |
| cosx |
| −2cos2x | |
+4cos3=0 | |
| cosx |
| 1 | ||
a) | , 2+√2, 2√2 +2, ..
| |
| √2−1 |
| cosα | 1 | ||
+ tgα = − | |||
| sinα−1 | cosα |
| cosα | cosα | sinα | ||||
L= | + tgα = | + | = | |||
| sinα−1 | sinα−1 | cosα |
| 1 | 1 | 1 | |||
= | − | * ctgx | |||
| 1 + cosx | sin2x | sinx |