| 1 | ||
1. Zbadać przebieg zmiennosci funkcji f(x)=e/div> | , to jest e do potęgi | |
| 5x−2 |
| d | ||
a) | ((3x+1)5)= | |
| dx |
| d | ||
b) | (√3x2+1)= | |
| dx |
| d | ||
c) | (ln(sin2x))= | |
| dx |
| d | ||
d) | (−3cos3(6x))= | |
| dx |
| d | ||
e) | (arcsin(2x))= | |
| dx |
| dx | ||
∫ | ||
| x(x+1)2 |
| −3π | 1 | |||
1. Oblicz sinx, jeśli x ∊ ( | , 0) i cosx = | |||
| 2 | 3 |
| π | 2 | |||
2. Oblicz cosx, jeśli x ∊ ( | , 2π) i sinx = | |||
| 2 | 3 |
| 1 | ||
3. Oblicz tgx, jeśli x ∊ (0, π) i cosx = | ||
| 4 |