Eta:
1/ Umieść punkty w układzie współrzędnych i narysuj prostą
y=x−3
2/ Punkt D ∊k y= x−3 i należy do prostej AC : y=1
zatem D( 4,1) to m >4
| 1 | |
3 / P(ABC) = |
| *h*|AC| , h= 2 , |AC|= m−1 i m>4 |
| 2 | |
P(ABC)= m−1
4/ z treści zadania P(ABC)=2P(DCE)
5/ Napisz równanie prostej BC : przechodzącej przez punkty B(2,3) i C(m,1)
6) rozwiąż układ równań prostych k i BC otrzymasz współrzędne punktu E
.........
| 6m−8 | | 2m−8 | | 2(m−4) | |
h1 trójkąta DEC : y=xE −3−1= |
| −4 = |
| = |
| |
| m | | m | | m | |
| 1 | |
P(DEC)= |
| *|DC|*h1 , |DC|= m−4 i m>4 , |
| 2 | |
ponieważ P(ABC)= 2P(DEC) to:
| 2(m−4)2 | |
m−1= |
| i m>4 ⇒ m = ....................... |
| m | |
rozwiąż to równanie i uwzględnij ,że m>4
i to wszystko