2sinx + 3cosx | ||
∫ | dx | |
sin2x*cosx + 9cos3x |
2 | 2t | 1−t2 | ||||
dx= | dt, sinx= | , cosx= | ||||
t2+1 | 1+t2 | 1+t2 |
cosx | ||
3 ∫ | = t = sinx | |
sin2x*cosx + 9 cos3x |
dt | ||
= 3 ∫ | ||
cosx(t2 + 9(1−t2) |
1 | ||
masz całkę ∫ | dx | |
sin2x+9cos2x |
dt | t2 | 1 | ||||
wtedy | =dx, sin2x= | , cos2x= | ||||
1+t2 | 1+t2 | 1+t2 |
sinx | cosx | |||
= 2 ∫ | dx + 3∫ | |||
sin2x*cosx + 9cos3x | sin2x*cosx + 9cos3x |
sinx | ||
2∫ | dx = t = cosx | |
sin2x*cosx + 9cos3x |
dt | ||
= −2∫ | ||
(1−t2)*t + 9t3 |
dt | ||
= −2∫ | ||
t(1 + 8t2) |
1 | t | |||
= −2(∫ | −8∫ | dt) | ||
t | 8t2+1 |
1 | ||
= −2( ln|t| − 8* | *ln|8t2+1|) | |
16 |
cosx | t2 | |||
3∫ | dx t = tg(x) sin2x = | |||
sin2x*cosx + 9cos3x | 1 + t2 |
1 | ||
dt = (1+t2)dx cos2x = | ||
1+t2 |
1 | dt | |||||||||||||||
= 3∫ | * | |||||||||||||||
| 1+t2 |
1 | 1 | t | ||||
= 3∫ | dt = 3* | arctg( | ) | |||
t2 + 9 | 3 | 3 |
tg(x) | ||
= arctg( | ) | |
3 |
tg(x) | ||
= ln|8cos2x + 1| − 2ln|cosx| + arctg( | ) + C | |
3 |
tg(x) | ||
czy tam na pewno ma być arctg( | ) ? | |
3 |