(x−2)2 | ||
∫sinx(2− | )dx | |
x2sinx |
x2−4x−4 | x3 | 1 | ||||
cosxdx ∫2− | = cosxdx (2− | − 2x2+4) ∫ | ||||
2xsinx | 3 | x2sinxdx |
(x−2)2 | x2 − 4x + 4 | |||
= 2∫sinxdx − ∫ | dx = 2∫sinxdx − ∫ | dx | ||
x2 | x2 |
1 | 1 | |||
= 2∫sinxdx − ∫dx + 4∫ | dx − 4∫ | dx | ||
x | x2 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |