x4 | ||
∫ | dx | |
x4 −1 |
dx | ||
Doprowadziłem ją do postaci x + C + ∫ | ||
(x−1)(x+1)(x2 +1) |
2x−4 | ||
1. f(x)= | ||
mx+2 |
(x−1)(x+2) | ||
2. f(x)= | ||
x2−m |
4 | ||
1. f(x)= | g(x)= mx | |
x |
m | ||
2. f(x)= | g(x)= m−x | |
x |
logex | 1 | x6 | ||||
∫ | = | lnx −−> | ; x5 −−> | | | |||
x5 | x | 6 |
1 | 1 | 1 | 1 | 1 | x6 | |||||||
= | x6lnx − | ∫ x6 | dx = | x6lnx − | +C = | |||||||
6 | 6 | x | 6 | 6 | 6 |
1 | 1 | |||
x6lnx − | x6 +C | |||
6 | 36 |