| sin1/2(n+1)x * sin1/2nx | ||
sinx+sin2x+...+sin(nx) = | ||
| siin1/2x |
| cos1/2(n+1)x * sin1/2nx | ||
cosx+cos2x+...+cos(nx) = | ||
| siin1/2x |
| nn | (n+1)n+1 | nn+1+1 | nn * n1 + 1 | ||||
= | = | = | no i to | ||||
| n! | (n+1)! | (n+1)! | (n+1)! |
| (d+e)g*l*m | ||
za całke i jak ? wynik to | ||
| 2 |
| d*(l−x)*m*g] | e*x*m*g | ||
+ | |||
| l | l |
| 1 | 1 | 1 | ||||
Lim n→∞ (1+ | )(1+ | )...(1+ | ) | |||
| 4 | 16 | 22n |