matematykaszkolna.pl
matematykaszkolna.pl
poprzednio matematyka.pisz.pl
Matura z Matematyki
Egzamin ósmoklasisty
forum zadankowe
liczby i wyrażenia algebraiczne
logika, zbiory, przedziały
wartość bezwzględna
funkcja i jej własności
funkcja liniowa
funkcja kwadratowa
wielomiany
funkcja wymierna
funkcja wykładnicza
logarytmy
ciągi liczbowe
granica ciągu i funkcji
pochodna funkcji
trygonometria
geometria na płaszczyźnie
geometria analityczna
geometria w przestrzeni
kombinatoryka
prawdopodobieństwo
elementy statystyki
dla studenta
gra w kropki
archiwum zadań z dnia 9.12.2018
Zadania
Odp.
1
Satan:
Mamy 100 rozróżnialnych prezentów oraz 25 osób. Na ile sposobów można rozdać prezenty tak, by każda osoba dostała 4 prezenty?
0
Nati:
Wykaż, że jeśli tg(α+β)=3tgα to sin(2α+2β)+sin(2β)=2sin2β
0
Marcin:
lim x/sin
2
x
2
JULIA:
Rozwiąż równanie:
3
Jakub Nowsielski :
Punkty: A = (− 4, −5)
0
421:
Okrąg o opisany na trójkącie ABC ma promień r Wykaż, że jeżeli koła o środkach A;B;C i promieniach r pokrywają koło ograniczone okręgiem o,
1
123:
√
6
p+{6}p+{6}p+{6}
2
Helu:
Niech an, dla n = 1, oznacza liczebność zbioru wszystkich liczb n− cyfrowych utworzonych z cyfr 1, 2, 3, 4 i 5 w taki sposób, że bezpośred− nio przed każdą z cyfr 3, 4 i 5 zawsze
1
Marcin K. :
Sprawdź czy można opisać okrąg na czworokącie, którego kolejno kąty mają miarę 15°, 60°, 165°.
4
tomek3:
W trójkącie prostokątnym ABC przy wierzchołku B 90. dwa wierzchołki maja współrzędne A(4; −5) C(−8; 5) wyznacz współrzędne wierzchołka B wiedząc że pole wynosi 61
8
Hunter:
a
1
+a
2
+a
3
=14 a
2
+a
3
+a
4
=28
4
asdf:
policzyć całkie
1
roccerrr1:
Wyznacz dziedzine a następnie maksymalne przedziały monotoniczności funkcji:
8
Paw99:
Oblicz poniższe granice. a)limx
sinx
2
marcel:
W trapezie prostokątnym ABCD o wysokości |AD|=h
5
j4kub3k:
Jakie m spełniają nierówność, jeżeli k∊R?
k
>m
3+k
2
2
Levix:
Czy istnieje granica funkcji f(x)= ⎧−x+2 dla x<2
5
roccerrr1:
Zbadaj ciągłość funkcji f w punkcie x0=3, jeśli:
1
qwerty:
(x+2)*4=(y−10)*8
2
Maryś:
Zbadaj liniową niezależność wektorów: {f(x) = sin2x, g(x) = cos(2x), h(x) = 2} w zbiorze funkcji ciągłych na [0, 1];
0
Helu:
Znajdź wzór rekurencyjny an − liczba ciągów n−wyrazowych o wyrazach ze zbioru {1,2,3,4,5} oraz takich, ze przed każda 3,4 oraz 5 stoi bezpośrednio 1
11
mamon:
Jak obliczyć to za pomocą wzorów viete'a: 2x
2
2
−3x
1
x
2
+2x
2
2
3
silent:
(x
3
)
∫
(x
2
+2)
2
2
maturka :
Bok rombu ma długość 18 cm, natomiast kąt ostry ma miarę 45°. Oblicz długości przekątnych tego rombu oraz jego pole.
2
Mateusz:
dane jest równanie:
4
deltoid :
Oblicz pole trójkąta równobocznego wpisanego w okrąg o promieniu r = 8√3
5
mamon:
Wykaż że nierówność | x + 2 |+ | x
2
− 4 | + | x | | x+2 | ≥ 0
5
PanFasola:
Obliczyć całkę:
1
Flap:
Oblicz pochodną funkcji cos(x
2
+1)*tg(x
2
−1)
1
Filip:
Najmniejsza wartość bezwględna miejsc zerowych funkcji f(x)=sin(1/x) wynosi A 0 B 1/π C1/2π D nie istnieje
2
Beton:
Oblicz pochodną drugiego rzędu funkcji:
6
Random:
w(x) = x
5
+ a
1
*x
4
+ a
2
*x
3
+ a
3
*x
2
+ a
4
*x
1
pochodna:
heej, jaka bedzie pochodna funkcji odwrotnej do f(x) = x
x
? wiem, że pochodna f(x) to x
x
(lnx + 1)
2
janusz98:
Jak z postaci (x
4
+ 4)
2
dojsc do (x
2
− 2 x + 2)
2
(x
2
+ 2 x + 2)
2
3
algebra:
W zbiorze X = {0,1} × D
10
definiujemy relację porządku: (x,y) ⊂ (z,t) <=> x ≤ z ∧ y|t
3
Baki:
limx→0 (1−x)tg(
π
2
x)
1
Klaudisz38:
Jak obliczyć pochodna takiej funkcji
5
Dwite:
Niech N oznacza największą liczbę naturalną spełniającą nierówność √x2+4x+4+√x2−4x+4<300
3
tomek3:
Podane współrzędne dwóch punktów − podaj wzór prostej
13
KP:
n!
Mam szereg: ∑
∞
n=1
.
n
n
Jak korzystam z kryterium de Alamberta to dochodzę do miejsca, gdzie otrzymuję
2(2n+1)n
n
. i dalej nie wiem co z tym zrobić
(n+1)
n
5
Dwite:
Różnica między największym a najmniejszym pierwiastkiem wielomianu W(x) = x
3
+ 3x
2
− 4x − 12 jest równa ?
12
student:
Wyznaczyć przedziały monotoniczości oraz ekstrema lokalne funkcji f(x) =
3
√
2x
2
−x
3
3
Dwite:
wielomian W(x) = x
3
− 2x
2
+ mx + 15 jest podzielny przez dwumian x + 3 zatem parametr m jest równy:
1
Kaka:
Jak obliczyć granicę jednostronne? lim(x−>0) sin x/|x|
5
mamon:
Równanie |x
2
−4x|=m o niewiadomej x, ma cztery różne rozwiązania w zbiorze liczb rzeczywistych dla:
1
Trufla:
Wykres funkcji f(x)=I log
2
x I przesunięto wzdłuż osi x i y otrzymując wykres funkcji g, której dziedziną jest zbiór (−3;
∞
), a zbiorem jej wartości <2;
∞
). Napisz wzór funkcji g i
1
Kokosik12:
W pewnej szkole 51 uczniów to członkowie SKS−u. Wśród nich 26 gra w siatkówkę, 30 pływa, 23 jeździ na nartach.
1
Kokosik12:
Uzasadnij, że jeżeli a≠b, a≠c, b≠c i a+b = 2c,to
a
a−c
+
b
b−c
= 2
1
Maciej :
Wyznacz zbiory A ∪ B, A ∩ B, gdy: A=<−2,4>, B=(1,5).
1
Maciej :
Wyznacz zbiory A ∩ B, A ∪ B, jeśli A={−1,0,3,6,7} B={−3,2,3,5}.
3
Mateusz:
Dane jest równanie należące to liczb zespolonych
z+i
arg
=
π
2
z−i
Wyciągnąłem założenia:
2
Jacek:
Do wykresu funkcji y=log
a
x, gdzie a>0 i a≠1 należy punkt P=(6
1
4
;−2). a)oblicz a i naszkicuj wykres do obliczonej wartości
2
kasia:
Jeżeli mam relacje bycia rodzicem (y jest rodzicem x) to jak będzie wyglądała relacja odwrotna do tej?
7
Elena:
Narysuj diagram Hassego minimalnego porządku, przy którym 1 ≼ 2, 2 ≼ 3, 5 ≼ 4, 4 ≼ 2, 6 ≼ 7, 7 ≼ 3, 7 ≼ 8, 8 ≼ 9, 3 ≼ 0, 9 ≼ 0
2
Kokosik12:
Wykaż że 13I3
n
+2 + 3
n
+1 + 3
n
, gdzie n∊ N Wykaż, że liczba 4*5
17
+ 2*5
16
− 2 *5
15
jest podzielna przez 15
0
Elena:
Dla funkcji f : R → R znaleźć f(A). , f
−1
(f(A)), f
−1
(C), f(f
−1
(C)):
4
mamon:
Równanie | | x−2|−1| = m ma:
5
Kokosik12:
1. Wiedząc, że 𝑎 +𝑏 = 2 i 𝑎2 +𝑏2 = 12 −4√6 oblicz 𝑎4 +𝑏4, 𝑎 −𝑏, 𝑎2 −𝑏2, 𝑎4 −𝑏4, 𝑎3 +𝑏3, 𝑎3 −𝑏3
1
mamon:
Zbiorem rozwiązań nierówności x
4
−3x
2
+2>0 jest:
5
asdf:
policz całkie
0
Kokosik12:
W pewnej szkole 51 uczniów to członkowie SKS−u. Wśród nich 26 gra w siatkówkę, 30 pływa, 23 jeździ na nartach.
9
mamon:
Oblicz iloczyn równania (x−
1
7
)(3x−1)=(x−
1
7
)(5x−2)
6
Dwite:
Iloczyn pierwiastków równania y = 3x
2
− 10x + m jest równy 2. Zatem parametr m jest równy:
1
Dwite:
Proszę o wskazówki do tego zadania: Równanie a
2
x+2=4x−a ma nieskończenie wiele rozwiązań dla parametru a równego:
3
Dwite:
mx−2y=2
1
MATURAAAAAAAA:
Z punktu A = (3,0) poprowadzono styczne do okręgu x
2
+ y
2
− 2x = 0. Styczne te przecinają prostą o równaniu y=
√
3
x+
√
3
w punktach B i C. Wyznacz pole trójkąta ABC.
2
Kar99:
Wyznacz najmniejszą i największą wartość funkcji f(x)=x
2
+2|x|−3 na przedziale x∊<−1,2>. Czy najmniejsza lub największą wartość funkcji jest zarazem jej ekstremum lokalnym? Odpowiedź
4
wielomiany:
O wielomianie w(x) =x
3
+bx
2
+cx+d, wiadomo, że posiada trzy różne niezerowe pierwiastki,
1
których suma wynosi k, a suma odwrotności
, gdzie k jest dowolną niezerową liczbą
k
rzeczywistą. Uzasadnij, że k jest pierwiastkiem wielomianu.
3
Maciej :
Zapisz wyrażenie w postaci potęgi:
1
(243)
*3
2
*(81)
2
*3
−3
.
1
Maciej :
Zapisz wyrażenie w postaci potęgi :
1
(234)
*3
2
*(81)
2
*3
−3
.
3
marcin:
(sin15°+cos15°)
2
sin125°cos25°+sin25°cos125°
4
msd:
Oblicz, korzystając z definicji całki oznaczonej, oraz z tw. Leibnitza−Newtona dla c. oznaczonej.
0
Wercia321:
Niech X będzie zmienną losową o rozkładzie jednostajnym na odcinku [0, 1] oraz niech Y = funkcja charakterystyczna {X> 1/2}.Wyznaczyć rozkład oraz wartość oczekiwaną zmiennej losowej
2
Dawid000:
Dodawanie poteg
1
Adam123:
Równanie liczb zespolonych
3
mat:
W liczbach zespolonych rozwiaz rownanie x
3
=1.
4
Karol:
Hej, Mam takie nietypowe pytanie
1
Ania:
Lim 3
2n+1
+3
n+1
podzielone przez 9
n+1
+5
n
przy n→
∞
2
Marta:
Obwód rombu jest równy 2p, zaś suma długości przekątnych jest równa m .
2
Sosna:
Jak zbadać określoność macierzy?
1
Darek:
Zbadaj liniową niezależność wektorów: {x=[1,2,1],y−=[2,1,−1],z=[3,2,1]} w przestrzeni R3;