| z+i | ||
arg | =π2 | |
| z−i |
| π | ||
Skoro argument liczby jest równy | , to znaczy że liczba ta jest równa ki, k>0. | |
| 2 |
| z+i | ||
=ki, k>0 | ||
| z−i |
| k−i | ||
z = | ||
| 1−ki |
| (k−i)(1+ki) | ||
z = | ||
| (1−ki)(1+ki) |
| k+k2i−i+k | ||
z = | ||
| k2+1 |
| 2k | k2−1 | |||
z = | + i | . | ||
| k2+1 | k2+1 |
| 2k | k2−1 | |||
x = | , y = | , k>0 | ||
| k2+1 | k2+1 |
| y | k2−1 | |||
= | ||||
| x | 2k |
| k2−1 | ||
(1) y = | x, k>0. | |
| 2k |
| k2−1 | ||
punkt (1, 0) oraz kilka prostych o współczynnikach kierunkowych | , k>0. | |
| 2k |
| 2k | ||
x = | , k>0, | |
| k2+1 |
| 2k | k2−1 | |||
x = | , y = | , k>0. | ||
| k2+1 | k2+1 |
| 4k2 | (k2−1)2 | 4k2+k4−2k2+1 | ||||
|z|2 = x2+y2 = | + | = | = | |||
| (k2+1)2 | (k2+1)2 | (k2+1)2 |
| (k2+1)2 | ||
= | = 1. | |
| (k2+1)2 |
| k2−1 | ||
sinφ = | , k>0 | |
| k2+1 |