| √x | ||
y''+2y'+y = | ||
| ex |
| 1 | 1 | 1 | 1 | 1 | |||||
+ | + | +...+ | > | ; n∊N+ | |||||
| n | n+1 | n+2 | 2n | 2 |
| 1 | 1 | 1 | 1 | 1 | ||||||
zal. ind. dla n=k: | + | + | +...+ | > | ||||||
| k | k+1 | k+2 | 2k | 2 |
| 1 | 1 | 1 | 1 | 1 | ||||||
teza ind. dla n=k+1: | + | + | +...+ | > | ||||||
| k+1 | k+2 | k+3 | 2k+2 | 2 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||
+ | + | +...+ | + | + | = | ||||||||
| k+1 | k+2 | k+3 | 2k | 2k+1 | 2k+2 | k |
| 1 | 1 | 1 | ||||
+ | + | + | ||||
| k+1 | k+2 | k+3 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||||||||
...+ | + | + | − | > | + | + | − | |||||||||
| 2k | 2k+1 | 2k+2 | k | 2 | 2k+1 | 2k+2 | k |
| 1 | 1 | 1 | 1 | 1 | |||||
+ | + | − | > | ||||||
| 2 | 2k+1 | 2k+2 | k | 2 |
| 1 | 1 | 1 | |||
+ | − | >0 dobrze? | |||
| 2k+1 | 2k+2 | k |
| n + 20 | ||
Dany jest ciag en o wzorze ogolnym en = | . Wyznacz takie dwa wyrazy tego ciagu, | |
| n |
| 1 | ||
ktorych roznica jest rowna −3 | .
| |
| 3 |