Na podstawie zasad dynamiki można udowodnić, że torem rzutu - przy pominięciu oporów powietrza - jest fragment paraboli. Koszykarz wykonał rzut do kosza z odległości x_k = 7,01 m, licząc od środka piłki do środka obręczy kosza w linii poziomej. Do opisu toru ruchu przyjmiemy układ współrzędnych, w którym środek piłki w chwili początkowej znajdował się w punkcie x_0=0, y_0=2,50 m. Środek piłki podczas rzutu poruszał się po paraboli danej równaniem: y = -0,174x² + 1,3x + 2,5 Rzut okazał się udany, a środek piłki przeszedł dokładnie przez środek kołowej obręczy kosza. Na rysunku poniżej przedstawiono tę sytuację oraz tor ruchu piłki w układzie współrzędnych. [rysunek] Oblicz współrzędną x punktu środka piłki w momencie, w którym piłka dotknęła parkietu. Zapisz wynik w zaokrągleniu do drugiego miejsca po przecinku.
Promień koła.
Argument i wartość funkcji.
Równanie kwadratowe.
Przybliżenie liczby dziesiętnej.
Wyróżnik (delta) funkcji kwadratowej.