nierówność
aro400: Rozwiąż nierówność:
6x | | 12x | | 12x | |
| − √ |
| − 24√ |
| >0 |
x−2 | | x−2 | | x−2 | |
12 mar 18:05
Eta:
| 12x | |
1/ założenia : |
| ≥0 i x−2≠0 ⇒ x ............ |
| x−2 | |
2/ zastosuj podstawienie:
| 12x | | 12x | | 12x | |
4√ |
| = t , t≥0 to |
| = t4 i √ |
| = t2 |
| x−2 | | x−2 | | x−2 | |
| 6x | | 1 | | 12x | | 1 | |
to |
| = |
| * |
| = |
| t4 |
| x−2 | | 2 | | x−2 | | 2 | |
| 1 | |
nierówność przybiera postać : |
| t4−t2−2t>0 |
| 2 | |
..........................
i działaj ( pamiętaj o założeniu!
12 mar 21:35
mietek:
Jako, że nie można tworzyć nowych tematów, to przywłaszczę sobie ten
Mam zadanie o treści "rozwiąż układ równań. podaj jego interpretację geometryczną"
x
2 + y
2 − 6x − 7 = 0
y = x + 1
rozwiązać potrafię, ale "interpretacja geometryczna" brzmi obco.. cóż to takiego?
13 mar 13:50
Jerzy:
pierwsze równannie to okrąg, drugie to prosta....zrób rysunek i zinterpretuj
13 mar 13:51
Janek191:
Narysuj okrąg i prostą .
13 mar 13:51
mietek:
na czym polega interpretacja (po narysowaniu okregu i prostej)?
13 mar 13:53
Jerzy:
opisz, jak jest położona ta prosta względem okręgu
13 mar 13:54
Jerzy:
13 mar 13:55
mietek:
więc rysuję i określam czy 1) nie jest styczna 2) jest styczna 3) ma 2 pkty wspólne z okręgiem?
13 mar 13:56
mietek:
a jakbym miał takie zadanie, ale nie byłoby okreŋu, a 2 proste.. to określam tylko czy mają
pkty wspólne czy coś jeszcze?
13 mar 13:57
rs: Jak obliczyć pole równoległoboku mając przekątne i 1 krótszy bok ? Jakaś podpowiedź ?
13 mar 13:57
Janek191:
(x −3)
2 − 9 +( y − 0)
2 − 7 = 0
(x −3)
2 + ( y − 0)
2 = 4
2
oraz
y = x + 1
Interpretacja :
Punkty wspólne: A = ( − 1 , 0) i B = ( 3, 4)
================================
13 mar 13:58
Jerzy:
dokładnie tak .... prosta przecina okrąg w puntach: ( wypisz te punkty )
13 mar 13:58
Jerzy:
tak .. rysujesz te dwie proste
13 mar 13:59
aro400: Dziękuję za rozwiązanie Eta
13 mar 13:59
mietek:
Ok, rozumiem − dzięki Wam
rs − ja skradłem ten temat, znajdź sobie własny
13 mar 14:01
Janek191:
13 mar 14:02
rs: Oj cicho
Ja tu tylko na chwilę potrzebuję podpowiedzi z geometri której nienawidzę. Zadanie
jest proste ja mam bok równoległoboku i podane przekątne, wie ktoś jak pole obliczyć ?
13 mar 14:02
rs: Szukałem zadanka na necie i jest jedynie z wykorzystaniem twierdzenia cosinusów, a tego jeszcze
nie przerabialiśmy więc musi być prostszy sposób.
Dany jest równoległobok o krótszym boku 6cm. Przekątne 8 i 12, oblicz pole
13 mar 14:06
Janek191:
Dane: b, p1, p2 gdzie p1 > p2
Oblicz : h i a
( a + x)2 + h2 = p12
b2 = x2 + h2
(a − x)2 + h2 = p22
13 mar 14:13
Krzychu: cześć szkoda że nie można dodawać tematów a mam do rozwiązania trochę zadań proszę o pomoc
1. Oblicz pole trójkąta prostokątnego jeżeli wysokość dzieli przeciwprostokątną na odcinki 5cm
i 20cm
2.Trójkąt prostokątny wpisany w okrąg o promieniu 10cm i przyprostokątnej 12cm jest podobny do
trójkąta o polu 6cm2 oblicz
a) skalę prawdopodobieństwa
b)obwód mniejszego trójkąta
13 mar 14:15
rs: 1. h=√x*y gdzie x i y to części tej przeciwprostokątnej czyli 5i 20
13 mar 14:18
Janek191:
h
2 = 5*20 = 100
h = 10
P = 0,5*25*10 = 125 [j
2]
13 mar 14:19
13 mar 14:19
rs: Okej Janek dzięki wielkie po porównaniu tego do rysunku rozumiem już wszystko, ale zadanie
wydaje sie byc latwe, nie da sie go zrobic inaczej ?
13 mar 14:22
Janek191:
z.2
c = 2 r = 20 cm
a = 12 cm
b = 16 cm
P
Δ = 0,5*12*18 = 108 [cm
2]
PΔ | | 108 | |
| = |
| = 18 = k2 ⇒ k = 3√2 |
PΔ' | | 6 | |
13 mar 14:23
mietek:
rs − tego nawet nie trzeba rysować.. jest wzór w tablicach na dole 8 strony
13 mar 14:24
Janek191:
L = a + b + c = 12 + 16 + 20 = 48
| 48 | | 8*2 | |
L' = 48 : k = |
| = |
| = 8√2 |
| 3√2 | | √2 | |
13 mar 14:28
Krzychu: 3. Oblicz pole trójkąta wiedząc żę promień okręgu wpisanego w trójkąt ma 3cm
b)promień okręgu opisanego ma 12cm
13 mar 14:50
Eta:
Jakiego trójkąta?
13 mar 14:56
Krzychu: równobocznego
13 mar 15:03
gosciu: Widze ze nie mozna dodawac nowych zadan, wiec podczepie sie do tego tematu.
Rozwiaz rownanie trygonometryczne: sin
3x + cos
3x = 1
Doszedlem do takiego momentu:
sin
3x + cos
3x = sin
2x + cos
2x
sin
2x(sinx−1) = cos
2x(1−cosx)
Jakies pomysly jak to dalej poprowadzic zeby doprowadzic do postaci iloczynowej?
Poprawna odpowiedz: x=2kπ v x=
π2+2kπ
Bede wdzieczny za kazda pomoc
13 mar 15:04
Krzychu: chciałbym naprawdę umieć samemu rozwiązywać te zadania czemu mając nawet wzory ciężko to tak
idzie?
13 mar 15:09
Eta:
| a√3 | | a√3 | | a√3 | |
r= |
| i 2r=R= |
| bo h= |
| |
| 6 | | 3 | | 2 | |
1 / r=3 to a
√3=6r ⇒ a=6
√3
2/ podobnie
R=2r=12 ⇒ r=6
itd...............................
13 mar 15:12
Eta:
I jak Krzychu?
13 mar 15:33
5-latek : Dzien dobry
Jakos leci do przodu .
13 mar 15:36
Krzychu: 1. 0,5 * 6√3 * 9=27√3 ?
13 mar 15:49
Eta:
1/ ok
2/ P=............ ?
13 mar 15:53
Krzychu: nie wiem czemu ale wydaje mi się że wyjdzie to samo albo 54√3
13 mar 16:00
13 mar 16:11
kotecek: ktoś pomoże?
13 mar 16:13
Eta:
Z treści zadania ΔCED jest równoramienny
to wprowadź odpowiednie oznaczenia miar kątów .........................
W ΔADF ; β+180
−α+γ=180
o ⇒ α=β+γ
co kończy dowód
13 mar 17:17
Eta:
2 sposób
..Wpisz oznaczenia miar kątów podobnie jak poprzednio............................
................................
to
180
o−β−γ+α=180
o ⇒ α=β+γ
c.n.u
13 mar 17:26
Krzychu: tak sobie liczę te zadanka...
chcę wiedzieć czy dobrze to rozwiązałem
W trójkącie prostokątnym przyprostokątne mają 3 i 4 cm
1.oblicz pole trójkąta
2.oblicz długość wysokośći wychodzącej z wierzchołka kąta prostego
1. a=3 b=4 to c=5
liczę połowę obwodu 3+4+5/2= 6
następnie stosuję wzór herolda. p=6*3*2*1=36
pole= 36 ?
13 mar 17:31
mietek:
Szybkie pytanko potrzebne do zadania nad którym pracuje − czy 2 proste nie mają pkt wspólnych
jeżeli mają te same a, a różne b?
13 mar 17:32
Krzychu: i jak dobrze ?
13 mar 17:38
5-latek : Mietek dwie proste nie maja punktów wspólnych kiedy sa rownolegle i nie nakladaja się na
siebie wiec ?
13 mar 17:41
mietek aka Herold:
czyli jest tak jak napisałem.. chyba
13 mar 17:43
5-latek :
Krzychu po co do pola tego trojkata Heron ?
a=3 h=4
P= 0,5*a*h = 6
Przy wzorze Herona jest pierwiastek wiec
√36=6
13 mar 17:44
5-latek : tak Mieciu . tak jak napisales
13 mar 17:45
mietek:
13 mar 17:45
Krzychu: przepraszam zapomniałem napisać pierw z 36 = 6
ważne że dobrze
13 mar 17:47
Krzychu: W trójkącie prostokątnym przyprostokątne mają 3 i 4 cm
oblicz długość wysokośći wychodzącej z wierzchołka kąta prostego
13 mar 17:51
13 mar 17:53
Krzychu: 6√3 ?
13 mar 17:57
Krzychu: mieciu wysokość mi wyszła 6√3
13 mar 17:59
5-latek : Wedlug tego wzoru to jakim cudem ?
Po drugie wiesz dlaczego taki wzor ? Jeśli nie to dlaczego nie dopytasz mietka ?
13 mar 18:01
kotecek: dziękuje
Eta
13 mar 18:22
mietek:
Krzychu, zrób tak jak mieciu i zaprzyjaźnij się z tablicami, bo warto
a i b to przyprostokątne, a więc 3 i 4
przeciwprostokątna to
√32 + 42 =
√25 = 5 (z pitagorasa..)
| 3*4 | | 12 | |
więc otrzymujemy |
| = |
| .. nie wiem jak Ci wyszło 6 √3 |
| 5 | | 5 | |
13 mar 18:27
Allel: Uczeń ma przeczytać ksiązke ktora ma 380 str pierwszego dnia przeczytal 10 str a potem co
nastepny dzien czytal o 4 str wiecej kiedy przeczyta ksiazke ? Z ciagu atytemtycznego blagam
pomocy
13 mar 18:30
mietek:
to by chyba było jakoś tak an = 10 + 4(n−1)
10 + 4(n−1) = 380
itd...
13 mar 18:33
mietek:
stop... nie tak
w ten sposób obliczylibyśmy, którego dnia przeczyta 380 stron
to trzeba policzyć ze wzoru na sumę
13 mar 18:36
Allel: pokazalbys mi jak ?
13 mar 18:38
mietek:
a
n = 10 + 4(n−1) = 4n + 6
| a1 + an | | 10 + 4n + 6 | |
Sn = |
| * n = |
| * n = |
| 2 | | 2 | |
| 4n + 16 | |
= |
| * n = n(2n+8) = 2n2 + 8n |
| 2 | |
2n
2 + 8n = 360
2n
2 + 8n −360 = 0
n
2 + 4n − 180 = 0
teraz Δ i ... n=2(
√46−1) ≈ 11,5
tylko to troche dziwna sprawa, bo n∊N
+ w ciągach... ale to pewnie dlatego, że na ostatni
dzień zostało troche mniej stron niż czytelnik był w stanie przeczytać... ale to lepiej niech
się wypowie ktoś kto się na tym zna
13 mar 18:47
Eta:
380 stron a nie 360
13 mar 18:49
5-latek : a1+an= a1+a1+(n−1)*r= 2a1+(n−1)*r
13 mar 18:53
mietek:
Eto, wrzuciłem to w wolfram i wtedy też n∉N
+, o co tu chodzi?
13 mar 18:53
mietek:
5−latek, wynik wyjdzie ten sam.. obliczyłem też z tego wzoru
no chyba, że ciągle gdzieś popełniam błąd
13 mar 18:54
Eta:
Czytał kilka dni z "hakiem"
Chyba,że że
Allel wpisała błędną liczbę stron ?
13 mar 19:02
Allel: Na milion procent tak pani nam podyktowala!
13 mar 19:04
5-latek : NIgdzie nie robisz bledu
należy napisac . Przeczta po 12 dniach .
A sam zainteresowany moglby uzyc tez swojego mózgu i policzyć sobie
13 mar 19:04
Allel: To jak umie to ktos rozwiazac?
13 mar 19:04
5-latek : To uczen liceum nie unie rozwiazac zwykłego równania kwadratowego ? Wstyd .
I nie piszse tego żeby obrazić
13 mar 19:07
Allel: jestem w 3 gimbie to po pierwsze robie zadania z nudow a chce sie tego nauczyc
13 mar 19:09
Eta:
Jak napisał
mietek
...................... tylko zamiast 360 to 380 stron
n
2+4n−190=0 Δ=776
√Δ≈27,9
czyli przeczytał tę książkę po
12 dniach
13 mar 19:10
Allel: nwm gdzie robie blad i tyle dlatego prosze o pelne rozwiazanie
13 mar 19:10
Allel: mam moze glupie dla was pytanie czemu ten wzor a nie −4 −27,9itd ?
13 mar 19:14
Eta:
bo n>0 −−− liczba dni
13 mar 19:15
Allel: jezu no tak dziekuje
i to jest napewno dobrze?
13 mar 19:17
Eta:
Jeżeli nic nie pominęłaś w treści zadania ( to innej możliwości nie ma
13 mar 19:19
5-latek : jasne
13 mar 19:23
Allel: ej a teraz to glupieje xd. Wyznacz x tak aby x+2,3x−1,5x−3 w danej kolejnosci tworzyly ciag
arytmetyczny. wychodzi mi sprzecznosc
13 mar 19:35
5-latek : 3 gimnzajum
13 mar 19:38
Janek191:
x ∊∅
13 mar 19:41
Allel: 5 latek z tego wychodzi 0=0 wiec?...
13 mar 19:45
Janek191:
Naucz się liczyć
6 x − 2 = 6 x − 1
− 2 ≠ − 1
13 mar 19:47
Allel: o boze...
13 mar 19:48
Allel: kurde dobrze za pierwsyzm razem obliczylam i napisalem ze sprzecznosc...
13 mar 19:49
Janek191:
Jakiś obojniak ?
obliczyłam , napisałem
13 mar 19:51
5-latek : jeśli tak wychodzi to masz równanie tozsamosciowe wiec kazda liczba podstawiona za x spelnia
to równanie
Ale sprawdzmy to
post 19:38
2(3x−1)=6x−1
6x−2=6x−1
6x−6x= −1+2
0=1 sprzeczność wiec policzone masz zle
Możesz również tak sprawdzić
a2−a1= a3−a2
13 mar 19:52
Allel: Slownik... moj brat korzysta z komputera czesciej ode mnie
13 mar 19:52
zdziwiony mietek: ?
13 mar 19:55
mietek:
40466 − rozumiem do 2 = h = a, ale potem nie wiem skąd bierze się to równanie z 3
ułamkami − proszę o podpowiedź
13 mar 20:35
Eta:
Podaję inny sposób
|BC|=a=3 |DE|=|FE|=2 to |BE|=
√22+12=
√5
| 2 | |
trójkąty DAE i FEB są podobne z cechy (kkk) w skali k= |
| =2 |
| 1 | |
to: |DA|=4 i |EF|=2
√5
zatem |AC|=6 i |AB|=3
√5
13 mar 21:36
Eta:
| √2ab | | √2*3*6 | |
Sprawdzenie : |CE|= |
| = |
| = 2√2 |
| a+b | | 3+6 | |
13 mar 21:41
mietek:
Takie rozwiązanie rozumiem, dziękuje
13 mar 22:05
Eta:
13 mar 22:13
Krzychu: ktoś pomoże liczę zadanie i wyszło mi z wzoru herona √1056 jak to rozłożyć żeby wyszło tak
jak w odpowiedzi P=84cm2
13 mar 22:23
Eta:
Mamy zgadywać ? .... o jakie zadanie Ci chodzi?
13 mar 22:24
Krzychu: Boki trójkata maja dł.21cm,17cm,10cm OBLICZ:a)pole trójkąta,b)długośc promienia okręgu
opisanego na tym trójkacie,c) długośc promienia okręgu wpisanego w ten trójkat
13 mar 22:26
Eta:
P=
√24*3*7*14=
√7056=84
dokończ............
13 mar 22:29
5-latek : Przeciez Ty nie potrafisz liczyc i myslec
czy √1056= 84 ? To jak chcesz to rozlozyc ?
13 mar 22:32
Mila:
wzór Herona
P=
√p*(p−a)*(p−b)*(p−c)
Policz jeszcze raz. Masz błąd w rachunkach.
13 mar 22:32
Eta:
P=√24*3*7*14=√16*9*49=4*3*7=84
13 mar 22:32
5-latek : Do tego jeszcze naucz się korzytstac z tablic gdzie masz wzory
13 mar 22:34
Krzychu: no tak źle połowę obwodu obliczyłem wcześniej dlatego nie mogłem wyłączyć tych 1056
r= 168/64= 3,5
R= 3570/336=10,625
13 mar 22:35
Eta:
No i Ci się "oberwało"
Krzychu
13 mar 22:36
Krzychu: wiem nie umiem podejść do zadania mając wzory w tablicach
13 mar 22:36
13 mar 22:39
Krzychu: robię właśnie to samo tylko na innych liczbach 16,24,12
połowa obw=16+24+12/2 =26
13 mar 22:45
Krzychu: wzór herona 26*10*2*14=7280
13 mar 22:46
5-latek : To nie jest wzor Herona
O czym zapomniales
13 mar 22:47
Krzychu: 26*(26−16)*(26−24)*(26−12)=26*10*2*14 = 7280
13 mar 22:48
5-latek : A pierwiastek to poszsedl sobie gdzie ?
Do panienki ?
13 mar 22:51
Krzychu: √7280 sry
13 mar 22:52
Laura: Dane sa dwie funkcje f(x)=x2 i g(x)=1/x oblicz
pole wyznaczane, przez te dwie funckje, uklad wspolrzednych dla x i prosta x=4
Czy pole to bedzie calka oznaczona
4
∫ x2−1/x dx?
0
13 mar 22:53
5-latek : No to teraz nalezaloby ten pierwiastek jakos inaczej rozpisać
Możesz to zrobić w ten sposób ze 7280 rozkladaz na czynniki pierwsze
potem te czynniki wstawiasz pod pierwistki i mnożysz to wszystko
13 mar 23:00
Krzychu: 7280/2
3640/2
1820/2
910/2
455/5
91/91
/1
13 mar 23:05
5-latek :
Zaraz muszse isc spac bo jutro do pracy
ale dlaczego nie liczysz np. z tw cosinisow
W trojkacie naprzeciw mniejszsego boku lezy mniejszy kat (dlatego masz kat α naprzeciwko boku
12
Polle trego trojkata to
P=0,5*b*c*sinα
==================
Z twierdzenia cosinusow obliczysz cos α
sinα=
√1−cos2α
podstawiasz do wzoru i gotowe
13 mar 23:09
Krzychu: ok spróbuję tą metodą dobranoc
13 mar 23:12
Krzychu: dziękuje za pomoc 5−latku
13 mar 23:12
mietek:
Oblicz pole trójkąta prostokątnego o jednej z przyprostokątnych długości 6 cm, jeśli promień
okręgu wpisanego w ten trójkąt jest równy 2.
Zrobiłem rysunek, utknąłem, przejrzałem rozwiązania z internetu i na czerwono zaznaczyłem to co
wg. znalezionych rozwiązań powinno się tam znaleźć...
niestety nie wiem z czego to wynika..
Nie chcę przyjmować, że tak jest, bo tak..
chciałbym to zrozumieć, bo zawsze planimetria sprawiała mi najwięcej problemów...
nadeszła pora (2 mc do matury
) żeby to zmienić, więc proszę o pomoc
13 mar 23:16
Ania: Pomóżcie mi bo nie umiem dodać nowego zadania
oblicz resztę z dzielenia wielomianu W(x)=
(x
8 + 8x
7 + 8 )
3 przez wielomian Z(x) = x+8.
13 mar 23:18
mietek:
Nowego zadania póki co nie dodasz, bo Admin pracuje nad ulepszeniem forum.
Jeżeli chcesz poznać resztę z dzielenia wielomianu w(x) przez wielomian z(x)=x−a
to podstaw "a" pod "x" w w(x)
Pamiętaj, że a = −8 (bo wzór to x−a, nie x+a)
( (−8)8 + 8*(−8)7 + 8 )3 = ... = 512
13 mar 23:23
Mila:
W(−8)=[(−8)8+8*(−8)7+8]3=(88−88+8)3=83
Reszta=83
13 mar 23:25
13 mar 23:36
Ania: Dziękuje bardzo!
13 mar 23:37
Eta:
@
mietek
Korzystasz z
twierdzenia o odcinkach stycznych ( poczytaj o tym twierdzeniu......
13 mar 23:46
Eta:
I teraz z tw. Pitagorasa
(2+x)2+62=(4+x)2 ⇒ ..................... x=6
to a=6 , b=2+6=8 , c= 4+6=10
13 mar 23:50
df: Wyznacz wszystkie wartości parametru m, dla których równanie x
2+(3−m
2)+m
2+m−2=0 ma dokładnie
trzy rozwiązania.
podstawiam za |x|=t , t≥0
t
2+(3−m
2)t+m
2+m−2=0
no i stwierdzam ,ze 3 rozwiazania beda wtedy gdy rownanie ma dokladnie 2 rozwiazania, gdzie
jednym z nich bedzie 0 a drugim liczba dodatnia
z pierwszym warunkiem nie ma problemu f(0)=0 i wychodzi m=−2 lub m=2
a nie wiem jak rozgryzc, ze 2 liczba bedzie dodatnia?
kombinowalem tak, ze skoro jest to liczba dodatnia ,to czyli jest to wieksza niz , więc
| −b+√Δ | |
|
| >0 , ale to nie zagralo |
| 2a | |
bardzo bym prosil o wskazowke
13 mar 23:54
13 mar 23:58
Eta:
@df napisz poprawnie dane równanie!
14 mar 00:27
mietek:
Obejrzałem film na ten temat (na youtube), coś do mnie dotarło
dziękuje
14 mar 19:44