|AO| | b+c | |||
Udowodnij, że | = | . | ||
|OM| | a |
a − x | c | ab | ||||
(1) z tw. o dwusiecznej mamy, że: | = | ⇔ x = | ||||
x | b | b + c |
|AO| | b | |||
(3) z tw. Snelliusa w ΔAOC mamy, że: | = | ⇔ | ||
sin(α) | sin(β) |
bsin(α) | ||
⇔ |AO| = | ||
sin(β) |
|OM| | x | |||
(4) z tw. Snelliusa w ΔCOM mamy, że: | = | ⇔ | ||
sin(α) | sin(180o−β) |
xsin(α) | ||
⇔ |OM| = | ||
sin(β) |
|AO| | bsin(α) | sin(β) | b | b + c | |||||
= | * | = | = b * | = | |||||
|OM| | sin(β) | xsin(α) | x | ab |
b + c | ||
= | . □ ![]() | |
a |
|AO| | b | ab | |||
= | , teraz tak samo kładziemy x = | z (1) i mamy tezę ![]() | |||
|OM| | x | b + c |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |