| |AO| | b+c | |||
Udowodnij, że | = | . | ||
| |OM| | a |
| a − x | c | ab | ||||
(1) z tw. o dwusiecznej mamy, że: | = | ⇔ x = | ||||
| x | b | b + c |
| |AO| | b | |||
(3) z tw. Snelliusa w ΔAOC mamy, że: | = | ⇔ | ||
| sin(α) | sin(β) |
| bsin(α) | ||
⇔ |AO| = | ||
| sin(β) |
| |OM| | x | |||
(4) z tw. Snelliusa w ΔCOM mamy, że: | = | ⇔ | ||
| sin(α) | sin(180o−β) |
| xsin(α) | ||
⇔ |OM| = | ||
| sin(β) |
| |AO| | bsin(α) | sin(β) | b | b + c | |||||
= | * | = | = b * | = | |||||
| |OM| | sin(β) | xsin(α) | x | ab |
| b + c | ||
= | . □ ![]() | |
| a |
| |AO| | b | ab | |||
= | , teraz tak samo kładziemy x = | z (1) i mamy tezę | |||
| |OM| | x | b + c |