matematykaszkolna.pl
okrag wpisany gibby: W trójkąt równoramienny ABC AC=BC wpisano okrąg.Punkt D jest punktem styczności tego okręgu z ramieniem BC i dzieli to ramie na odcinki długości BD=5 i CD=3. Oblicz AD Próbowałam z pól (z Herona) P.abc = 13*3*5*5 = P.abd + P .acd ale rachunki wychodzą potworne i zastanawiam się czy to wgl dobry sposób i warto w to brnąć
7 lut 19:06
wredulus_pospolitus: rysunek z tw. cosinusów:
 5 
82 = 82 + 102 − 2*8*10*cosα ⇔ 16cosα = 10 ⇔ cosa =

 8 
no to teraz: x2 = 52 + 102 − 2*5*10*cosα podstawiasz i gotowe
7 lut 19:16
wredulus_pospolitus: PS. Oczywiście wartość cosα można było wyznaczyć z trójkąta prostokątnego po narysowaniu wysokości emotka
7 lut 19:17
7 lut 19:22
gibby: kurczę rzeczywiście, dzieki wielkie
7 lut 19:36
wredulus_pospolitus: a tak przy okazji −−− wzór Herona jest supcio dupcio, ale w szkole nie ma praktycznie zadań które by wymagały skorzystanie z niego
7 lut 19:38
chichi: czasami pojawiają się zadania, aby obliczyć pole trójkąta mając podane dłg. 3 boków, niektórzy z tw. Carnota wyznaczają wartość cosinusa jednego z kątów, później z 1 tryg. wartość sinusa
 1 
tego kąta i liczą pole ze wzoru S =

absin(α), ale można inaczej − posłużyć się właśnie
 2 
Heronem emotka
7 lut 19:53