dy | ||
równanie takie : x(1−x2) | +(2x2−1)y=ax3 | |
dx |
x2(x−2) | √x2−1 | |||
C'(x)+ | C(x)=−ax | |||
1−x2 | (1−x2)2 |
dy | ||
masz wyznaczonego y, policz | i wstaw wszystko do wyjściowego równania i zobacz co | |
dx |
dy | ||
x(1−x2) | +(2x2−1)y=ax3 | |
dx |
dy | ||
x(1−x2) | +(2x2−1)y=0 | |
dx |
dy | ||
x(1−x2) | =−(2x2−1)y | |
dx |
dy | −(2x2−1 | ||
= | y | ||
dx | x(1−x2) |
dy | 2x2−1 | ||
= − | dx | ||
y | x(1−x2) |
2x2−1 | 2x(2x2−1) | |||
∫− | dx =∫− | dx | ||
x(1−x2) | 2x2(1−x2) |
2t−1 | 1 | 2t−1 | ||||
∫ | dt = | ∫ | dt | |||
−t(1−t) | 2 | t2−t |
2t−1 | 1 | |||
∫ | dt = | ln|t2−t|+C1 | ||
t2−t | 2 |
2x2−1 | 1 | |||
∫− | dx= | ln|x4−x2|+C | ||
x(1−x2) | 2 |
x2 | ||
x(1−x2)(C'(x)x√x2−1+C(x)(√x2−1+ | ))+(2x2−1)C(x)x√x2−1=ax3 | |
√x2−1 |
−x(x2−1)2−x3(x2−1)+x(2x2−1)(x2−1) | ||
−x2(x2−1)√x2−1C'(x)+C(x) | = ax3 | |
√x2−1 |
−x5+2x3−x−x5+x3+2x5−3x3+x | ||
−x2(x2−1)√x2−1C'(x)+C(x) | = ax3 | |
√x2−1 |
−ax | ||
C'(x)= | ||
(x2−1)√x2−1 |
−ax | ||
∫ | dx | |
(x2−1)√x2−1 |
t2 + 1 | ||
x = | ||
2t |
2t*2t−2(t2+1) | ||
dx = | dt | |
4t2 |
t2−1 | ||
dx = | dt | |
2t2 |
2t2−t2−1 | ||
t−x = | ||
2t |
t2−1 | ||
t−x = | ||
2t |
8t3 | t2+1 | t2−1 | ||
−a∫ | dt | |||
(t2−1)3 | 2t | 2t2 |
t2+1 | 1−t2+2t2 | |||
−2a∫ | dt = −2a(∫ | dt | ||
(t2−1)2 | (t2−1)2 |
1 | (−t)(2t) | |||
=−2a(−∫ | +∫ | dt) | ||
t2−1 | (t2−1)2 |
1 | t | −1 | ||||
=−2a(−∫ | +(− | −∫ | dt)) | |||
t2−1 | t2−1 | (t2−1) |
1 | t | 1 | ||||
=−2a(−∫ | − | + ∫ | dt) | |||
t2−1 | t2−1 | t2−1 |
2at | ||
= | +C | |
t2−1 |
a | ||
= | ||
√x2−1 |
a | ||
ys = | * (x√x2−1) | |
√x2−1 |
a | |
du = dx | |
u(1+u2) |
a(1+u2)−u2) | |
= dx | |
u(1+u2) |
a | au | ||
− | = dx | ||
u | 1+u2 |
2 | 2u | 2 | |||
− | = | dx | |||
u | 1+u2 | a |
u2 | 2 | |||
ln| | |= | x + ln|C1| | ||
1+u2 | a |
u2 | 2 | ||
= Ce | x | ||
1+u2 | a |
1+u2 | 2 | ||
= C1e− | x | ||
u2 | a |
1 | 2 | |||
1+ | = C1e− | x | ||
u2 | a |
1 | 2 | ||
= −1 + C1e− | x | ||
u2 | a |
1 | |||||||||||
u2 = | |||||||||||
|
| |||||||||||
u2 = | |||||||||||
|
| |||||||||||
u = ± | |||||||||||
|
| |||||||||||
y' = ± | |||||||||||
|
| |||||||||||
∫ | dx | ||||||||||
|
1 | ||
t = e | x | |
a |
1 | 1 | |||
dt = | e | xdx | ||
a | a |
a | a | 1 | |||||||||||||
∫ | dt= | ∫ | dt | ||||||||||||
√C1−t2 | √C1 |
|
a | t | |||
∫ | dt=a*arcsin( | )+C2 | ||
√C1−t2 | √C1 |
e1ax | ||
y(x) = ± (a*arcsin( | )+C2) | |
√C1 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |