| dy | ||
równanie takie : x(1−x2) | +(2x2−1)y=ax3 | |
| dx |
| x2(x−2) | √x2−1 | |||
C'(x)+ | C(x)=−ax | |||
| 1−x2 | (1−x2)2 |
po prostu schemat i tyle, zaraz spróbuję jeszcze raz
| dy | ||
masz wyznaczonego y, policz | i wstaw wszystko do wyjściowego równania i zobacz co | |
| dx |
| dy | ||
x(1−x2) | +(2x2−1)y=ax3 | |
| dx |
| dy | ||
x(1−x2) | +(2x2−1)y=0 | |
| dx |
| dy | ||
x(1−x2) | =−(2x2−1)y | |
| dx |
| dy | −(2x2−1 | ||
= | y | ||
| dx | x(1−x2) |
| dy | 2x2−1 | ||
= − | dx | ||
| y | x(1−x2) |
| 2x2−1 | 2x(2x2−1) | |||
∫− | dx =∫− | dx | ||
| x(1−x2) | 2x2(1−x2) |
| 2t−1 | 1 | 2t−1 | ||||
∫ | dt = | ∫ | dt | |||
| −t(1−t) | 2 | t2−t |
| 2t−1 | 1 | |||
∫ | dt = | ln|t2−t|+C1 | ||
| t2−t | 2 |
| 2x2−1 | 1 | |||
∫− | dx= | ln|x4−x2|+C | ||
| x(1−x2) | 2 |
| x2 | ||
x(1−x2)(C'(x)x√x2−1+C(x)(√x2−1+ | ))+(2x2−1)C(x)x√x2−1=ax3 | |
| √x2−1 |
| −x(x2−1)2−x3(x2−1)+x(2x2−1)(x2−1) | ||
−x2(x2−1)√x2−1C'(x)+C(x) | = ax3 | |
| √x2−1 |
| −x5+2x3−x−x5+x3+2x5−3x3+x | ||
−x2(x2−1)√x2−1C'(x)+C(x) | = ax3 | |
| √x2−1 |
| −ax | ||
C'(x)= | ||
| (x2−1)√x2−1 |
| −ax | ||
∫ | dx | |
| (x2−1)√x2−1 |
| t2 + 1 | ||
x = | ||
| 2t |
| 2t*2t−2(t2+1) | ||
dx = | dt | |
| 4t2 |
| t2−1 | ||
dx = | dt | |
| 2t2 |
| 2t2−t2−1 | ||
t−x = | ||
| 2t |
| t2−1 | ||
t−x = | ||
| 2t |
| 8t3 | t2+1 | t2−1 | ||
−a∫ | dt | |||
| (t2−1)3 | 2t | 2t2 |
| t2+1 | 1−t2+2t2 | |||
−2a∫ | dt = −2a(∫ | dt | ||
| (t2−1)2 | (t2−1)2 |
| 1 | (−t)(2t) | |||
=−2a(−∫ | +∫ | dt) | ||
| t2−1 | (t2−1)2 |
| 1 | t | −1 | ||||
=−2a(−∫ | +(− | −∫ | dt)) | |||
| t2−1 | t2−1 | (t2−1) |
| 1 | t | 1 | ||||
=−2a(−∫ | − | + ∫ | dt) | |||
| t2−1 | t2−1 | t2−1 |
| 2at | ||
= | +C | |
| t2−1 |
| a | ||
= | ||
| √x2−1 |
| a | ||
ys = | * (x√x2−1) | |
| √x2−1 |
Przypominam sobie po kolei według tego co będziemy mieli na zajęciach
| a | |
du = dx | |
| u(1+u2) |
| a(1+u2)−u2) | |
= dx | |
| u(1+u2) |
| a | au | ||
− | = dx | ||
| u | 1+u2 |
| 2 | 2u | 2 | |||
− | = | dx | |||
| u | 1+u2 | a |
| u2 | 2 | |||
ln| | |= | x + ln|C1| | ||
| 1+u2 | a |
| u2 | 2 | ||
= Ce | x | ||
| 1+u2 | a |
| 1+u2 | 2 | ||
= C1e− | x | ||
| u2 | a |
| 1 | 2 | |||
1+ | = C1e− | x | ||
| u2 | a |
| 1 | 2 | ||
= −1 + C1e− | x | ||
| u2 | a |
| 1 | |||||||||||
u2 = | |||||||||||
|
| |||||||||||
u2 = | |||||||||||
|
| |||||||||||
u = ± | |||||||||||
|
| |||||||||||
y' = ± | |||||||||||
|
| |||||||||||
∫ | dx | ||||||||||
|
| 1 | ||
t = e | x | |
| a |
| 1 | 1 | |||
dt = | e | xdx | ||
| a | a |
| a | a | 1 | |||||||||||||
∫ | dt= | ∫ | dt | ||||||||||||
| √C1−t2 | √C1 |
|
| a | t | |||
∫ | dt=a*arcsin( | )+C2 | ||
| √C1−t2 | √C1 |
| e1ax | ||
y(x) = ± (a*arcsin( | )+C2) | |
| √C1 |