x | ||
d) ∫ | dx | |
x3 + 1 |
x | 1 | x + 1 | 1 | |||||
(d) hint: | = | ( | − | ) | ||||
x3 + 1 | 3 | x2 − x + 1 | x + 1 |
−(4x−4)(x+A) | ||
∫√−4x2+8x−3dx=(x+A)√−4x2+8x−3−∫ | dx | |
√−4x2+8x−3 |
−4x2+8x−3−1) | ||
∫√−4x2+8x−3dx=(x−1)√−4x2+8x−3−∫ | dx | |
√−4x2+8x−3 |
1 | ||
∫√−4x2+8x−3dx=(x−1)√−4x2+8x−3−∫√−4x2+8x−3dx+∫ | dx | |
√−4x2+8x−3 |
1 | ||
2∫√−4x2+8x−3dx=(x−1)√−4x2+8x−3+∫ | dx | |
√1−(2x−2)2 |
1 | ||
∫ | dx | |
√1−(2x−2)2 |
1 | ||
dx= | dt | |
2 |
1 | 1 | 1 | ||||
∫ | dx= | ∫ | dt | |||
√1−(2x−2)2 | 2 | √1−t2 |
1 | 1 | |||
∫ | dx= | arcsin(2x−2)+C1 | ||
√1−(2x−2)2 | 2 |
1 | ||
2∫√−4x2+8x−3dx=(x−1)√−4x2+8x−3+ | arcsin(2x−2)+C1 | |
2 |
1 | 1 | |||
∫√−4x2+8x−3dx= | (x−1)√−4x2+8x−3+ | arcsin(2x−2)+C | ||
2 | 4 |