Punkty styczności okręgu wpisanego w kąt są jednakowo odległe od wierzchołka kąta
| 3 | ||
m= | a | |
| 5 |
| m | a | 5 | |||
= | ⇔|OD|= | x | |||
| x | |OD| | 3 |
| h | h+r | 3 | ||||
ΔAEL∼ΔAOD⇔ | = | ⇔h= | r | |||
| x | (5/3x) | 2 |
| 5 | ||
|AO|= | r | |
| 2 |
| 5 | 21 | |||
( | r)2=|AK|2+r2 ⇔|AK|2= | r2 | ||
| 2 | 4 |
| √21 | ||
|AK|= | r | |
| 2 |
| √21 | ||
r2=|AK|*n ⇔r2= | r*n | |
| 2 |
| 2r | ||
n= | ||
| √21 |
| |AK| |
| ||||||||
= | |||||||||
| |KD| |
|
| |AK| | 21 | ||
= | |||
| |KD| | 4 |
To jeszcze taki sposób
Wprowadzam r= 2k >0 ( bardziej "przyjazne" będą obliczenia
Z tw. Talesa w ΔAOD : |AE|=3k, |EO|=2k to |AO|=5k
i z tw. Pitagorasa w ΔAOD :
|AK|2=(5k2)−(2k)2 ⇒ |AK|2=21k2 oraz (2k)2=|AK|*|KD| ^2
| 16k2 | ||
to 16k4=|AK|2*|KD|2 ⇒ 16k4=21k2*|KD|2⇒ |KD|2= | ||
| 21 |
| |AK| | 21k2*21 | 21 | ||||
więc: ( | )2= | =( | )2 | |||
| |KD| | 16k2 | 4 |
| |AK| | 21 | |||
to | = | |||
| |KD| | 4 |