| √x+1−3√1+x | ||
a) lim x→0 | ||
| x |
| √9+2x−5 | ||
b) lim x→8 | ||
| 3√x−2 |
| √2−√1+cosx | ||
c) lim x→0 | ||
| sin2x |
| 1−4sin2x | ||
a) lim x→π/6 | ||
| cos3x |
| 1+sinx−cosx | ||
b) lim x→0 | ||
| 1+sin2x−cos2x |
| √x−√2+√x−2 | ||
c) lim x→2 | ||
| √x2−4 |
| 1−4sin2x | 1−4sin2x | |||
limx→π/6 | =limx→π/6 | |||
| cos3x | 4cos3x−3cosx |
| 1−4sin2x | ||
=limx→π/6 | ||
| cosx(4cos2−3) |
| 1−4sin2x | ||
=limx→π/6 | ||
| cosx(4−4sin2−3) |
| 1−4sin2x | ||
=limx→π/6 | ||
| cosx(1−4sin2) |
| 1 | ||
=limx→π/6 | ||
| cosx |
| 1+sinx−cosx | ||
limx→0 | = | |
| 1+sin2x−cos2x |
| (1+sinx−cosx)(1+sinx−cosx) | ||
limx→0 | = | |
| (1+sin2x−cos2x)(1+sinx+cosx) |
| 1+2sinx+sin2x−cos2x | ||
limx→0 | = | |
| (1+sin2x−cos2x)(1+sinx+cosx) |
| 2sin2x+2sinx | ||
limx→0 | = | |
| (cos2x+sin2x+2sinxcosx−cos2x+sin2x)(1+sinx+cosx) |
| 2sinx(sinx+1) | ||
limx→0 | = | |
| (2sin2x+2sinxcosx)((1+sinx+cosx)) |
| 2sinx(sinx+1) | ||
limx→0 | = | |
| 2sinx(sinx+cosx)((1+sinx+cosx)) |
| (sinx+1) | ||
limx→0 | ||
| (sinx+cosx)((1+sinx+cosx)) |
| √x−√2+√x−2 | ||
limx→2 | = | |
| √x2−4 |
| (√x−(√2−√x−2))(√x+(√2−√x−2)) | ||
limx→2 | ||
| √x2−4(√x+(√2−√x−2)) |
| x−(2−2√2√x−2+x−2) | ||
limx→2 | ||
| √x2−4(√x+(√2−√x−2)) |
| 2√2√x−2 | ||
limx→2 | ||
| √x−2√x+2(√x+√2−√x−2) |
| 2√2 | ||
limx→2 | ||
| √x+2(√x+√2−√x−2) |