√x+1−3√1+x | ||
a) lim x→0 | ||
x |
√9+2x−5 | ||
b) lim x→8 | ||
3√x−2 |
√2−√1+cosx | ||
c) lim x→0 | ||
sin2x |
1−4sin2x | ||
a) lim x→π/6 | ||
cos3x |
1+sinx−cosx | ||
b) lim x→0 | ||
1+sin2x−cos2x |
√x−√2+√x−2 | ||
c) lim x→2 | ||
√x2−4 |
1−4sin2x | 1−4sin2x | |||
limx→π/6 | =limx→π/6 | |||
cos3x | 4cos3x−3cosx |
1−4sin2x | ||
=limx→π/6 | ||
cosx(4cos2−3) |
1−4sin2x | ||
=limx→π/6 | ||
cosx(4−4sin2−3) |
1−4sin2x | ||
=limx→π/6 | ||
cosx(1−4sin2) |
1 | ||
=limx→π/6 | ||
cosx |
1+sinx−cosx | ||
limx→0 | = | |
1+sin2x−cos2x |
(1+sinx−cosx)(1+sinx−cosx) | ||
limx→0 | = | |
(1+sin2x−cos2x)(1+sinx+cosx) |
1+2sinx+sin2x−cos2x | ||
limx→0 | = | |
(1+sin2x−cos2x)(1+sinx+cosx) |
2sin2x+2sinx | ||
limx→0 | = | |
(cos2x+sin2x+2sinxcosx−cos2x+sin2x)(1+sinx+cosx) |
2sinx(sinx+1) | ||
limx→0 | = | |
(2sin2x+2sinxcosx)((1+sinx+cosx)) |
2sinx(sinx+1) | ||
limx→0 | = | |
2sinx(sinx+cosx)((1+sinx+cosx)) |
(sinx+1) | ||
limx→0 | ||
(sinx+cosx)((1+sinx+cosx)) |
√x−√2+√x−2 | ||
limx→2 | = | |
√x2−4 |
(√x−(√2−√x−2))(√x+(√2−√x−2)) | ||
limx→2 | ||
√x2−4(√x+(√2−√x−2)) |
x−(2−2√2√x−2+x−2) | ||
limx→2 | ||
√x2−4(√x+(√2−√x−2)) |
2√2√x−2 | ||
limx→2 | ||
√x−2√x+2(√x+√2−√x−2) |
2√2 | ||
limx→2 | ||
√x+2(√x+√2−√x−2) |