| tg(x/2) | 4 √3 | |||
Wykaz ze dla x∊(0,π) zachodzi | ≥ | . | ||
| sin2x | 9 |
| x | π | |||
t = | −−> (0, | ) | ||
| 2 | 2 |
| tgt | 4√3 | ||
>= | |||
| sin22t | 9 |
| 9tgt − 4√3sin22t | |
>= 0 | |
| 9sin22t |
| 9sint − 4√3sin22tcost | |
>= 0 −−− cost > 0 | |
| cost |
| 3√3 | ||
sintcos3t <= | ||
| 16 |
| π | π | |||
sintcos3t przyjmuje maksymalna wartosc, gdy t = | −− 2t(x) = | |||
| 2 | 4 |
| √2 | 3√3 | |||
( | )4 <= | |||
| 2 | 16 |
| 4 | 3√3 | ||
<= | |||
| 16 | 16 |
| π | π | |||
Poprawiam, sintcos3t przyjmuje wartosc maksymalna dla t = | czyli x = | i wynosi | ||
| 3 | 6 |
| 3√3 | ||
ona | ||
| 16 |
| 1 | 1 | |||
(sintcos3t)2 = | (cos4t − 3sin2tcos2t) = | (4cos4t − 3cos2t) | ||
| 2 | 2 |
| 3 | ||
cos2t = | ||
| 4 |
| √3 | π | |||
cost = ± | (dla | masz maximum) | ||
| 2 | 6 |