| √3 | ||
k = | (wysokość trójkąta równobocznego) | |
| 2 |
| 2 | ||
42+ | k = l2 | |
| 3 |
| 1 | 49 | 7 | ||||
l2 =16 + | = | → l = | ||||
| 3 | 3 | √3 |
| 4 | h | ||
= | |||
| l | k |
| √3 | 7 | |||
4* | = | h | ||
| 2 | √3 |
| 6 | ||
h = | ||
| 7 |
| 1 | 6 | 3 | ||||
P = | *1* | = | ||||
| 2 | 7 | 7 |
Inny sposób:
| √3 | √3 | |||
1)|EB|= | , |OB|= | |||
| 2 | 3 |
| |OB| | √3 | √3 | ||||
ctgα= | ⇔ctgα= | = | ||||
| H | 3*4 | 12 |
| x | √3 | |||
W ΔEDB: ctgα= | ⇔x=h* | |||
| h | 12 |
| √3 | 3 | |||
|EB|2=h2+x2⇔( | )2=h2+h2* | |||
| 2 | 144 |
| 3 | 49 | 3 | 48 | 36 | |||||
= | h2 ⇔h2= | * | = | ||||||
| 4 | 48 | 4 | 49 | 49 |
| 6 | ||
h= | ||
| 7 |
| 3 | ||
PΔACD= | ||
| 7 |