Pole ściany bocznej ostrosłupa prawidłowego czworokątnego jest równe S.
Kąt płaski przy wierzchołku ma miarę 2α. Obliczyć objętość ostrosłupa.
| a*h | ||
S= | / * 2 | |
| 2 |
| 2S | |
=a | |
| h |
| a | ||
tgα= | ||
| h |
| 2S | |
=tgα*h / * h | |
| h |
| 2S | |
=h2 | |
| tgα |
| 2S | ||
h=√ | ||
| tgα |
| a | ||
tgα= | ||
| h |
| a | ||
h= | ||
| tgα |
| 2S | ||||||||||
=a | ||||||||||
|
| 4S | |||||||||||
2a= | |||||||||||
|
| 16S2 | ||||||||
Pp=(2a)2 = | ||||||||
|
| tgα | 16S*tgα | |||
16S2* | = | =8S*tgα = Pp | ||
| 2S | 2 |
| 2S | 4S2 | 2S | tgα | 2S | ||||||||||||
H2= | − | = | −4S* | = | −2S*tgα= | |||||||||||
| tgα |
| tgα | 2 | tgα |
| 2S | 2S*tg2α | 2S−2S*tg2α | ||||
= | − | = | ||||
| tgα | tgα | tgα |
| 2S−2S*tg2α | ||
H=√ | ||
| tgα |
| 1 | 2S−2S*tg2α | |||
V= | *8S*tgα*√ | |||
| 3 | tgα |
| 4 | ||
Odpowiedź to: | √S3*tgα(1−tg2α) | |
| 3 |
| a | ||
Nie wiem dlaczego książka sugeruje, że tgα= | ||
| 2h |
| a | |||||||||
tgα = | = | |||||||||
| h | 2h |
| 2a*h | ||
Ok, wiem, powinienem był napisać S= | ... | |
| 2 |
| 2a*h | ||
S= | = a*h | |
| 2 |
| a | ||
tgα= | ||
| h |
| S | |
=h2 | |
| tgα |
| S | ||
h=√ | ||
| tgα |
| S | S*tg2α | |||
a=tgα*√ | = √ | = √S*tgα | ||
| tgα | tgα |
| S | ||
H2+S*tgα= | ||
| tgα |
| S | ||
H2= | −Stgα | |
| tgα |
| S | S*tg2α | S−S*tg2α | S(1−tg2α) | |||||
H2= | − | = | = | |||||
| tgα | tgα | tgα | tgα |
| S(1−tg2α) | ||
H=√ | ||
| tgα |
| 1 | S(1−tg2α) | 4 | S(1−tg2α) | |||||
V= | *4S*tgα*√ | = | *S*tgα*√ | = | ||||
| 3 | tgα | 3 | tgα |
| 4 | S3*tg2α(1−tg2α) | 4 | ||||
= | *√ | = | √S3*tgα(1−tg2α) | |||
| 3 | tgα | 3 |
wyszło na szczęście