| 1 | ||
Obliczyc wartosc calki ∫2∞ | dx. | |
| x2−1 |
| 1 | 1 | 1/2 | −1/2 | |||||
∫2∞ | dx=∫2∞ | dx=∫2∞ | + | dx= | ||||
| x2−1 | (x−1)(x+1) | (x−1) | (x+1) |
| 1 | 1 | 1 | 1 | |||||
= | ∫2∞ | dx− | ∫2∞ | dx= | ||||
| 2 | (x−1) | 2 | (x+1) |
| 1 | 1 | |||
= | ln(x−1)|2∞− | ln(x+1)|2∞ | ||
| 2 | 2 |
| 1 | x−1 | 1 | A−1 | 1 | 2−1 | |||||||
= | ln( | )|2 ∞ = limA→∞ | ln( | ) − | ln( | )= | ||||||
| 2 | x+1 | 2 | A+1 | 2 | 2+1 |
| 1 | 1 | |||
=− | ln( | ) | ||
| 2 | 3 |
| ∞ | ||
Ale wychodzi ln( | ). | |
| ∞ |
| ∞ | |
to symbol nieoznaczony | |
| ∞ |
| 1 − 1/A | ||
limA→∞ | = 0 | |
| 1 +1/A |