π | ||
sinx+ sin( | −x) >= 1 | |
2 |
x + π2−x | x − (π2−x) | |||
2sin | cos | >=1 | ||
2 | 2 |
π | π | |||
2sin( | )cos(x− | >=1 | ||
4 | 4 |
√2 | π | |||
2* | cos(x− | ) >=1 | ||
2 | 4 |
π | ||
√2cos(x− | ) = 1 / *√2 | |
4 |
π | ||
2cos(x− | )= √2 / :2 | |
4 |
π | √2 | |||
cos(x− | ) = | |||
4 | 2 |
π | ||
x = | + 2kπ v x= 2kπ | |
2 |
π | π | |||
x∊<2kπ; | +2kπ>, a w odpowiedzi jest x∊<2kπ; | +kπ> | ||
2 | 2 |
π | √2 | |||
cos(x− | )≥ | , | ||
4 | 2 |
π | π | π | π | |||||
x− | = | +2kπ lub x− | =− | +2kπ | ||||
4 | 4 | 4 | 4 |
π | π | π | π | |||||
− | +2kπ≤x− | ≤ | +2kπ /+ | |||||
4 | 4 | 4 | 4 |
π | ||
2kπ≤x≤ | +2kπ | |
2 |
π | ||
Czyli dobrze zrobiłem, nie wiem skąd w książce odpowiedź | + kπ | |
2 |
1 | ||
cosx <= | ||
2 |
1 | ||
cosx = | ||
2 |
π | −π | |||
x= | +2kπ v x= | +2kπ | ||
3 | 3 |
π | 5 | |||
x∊< | +2kπ; | π+2kπ> | ||
3 | 3 |
1 | ||
cos(x)≤ | ||
2 |
π | π | |||
x1= | +2kπ lub x2=2π− | +2kπ | ||
3 | 3 |
π | 5π | ||
+2kπ≤x≤ | +2kπ | ||
3 | 3 |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |