sinx | 1 | sin0 | 0 | |||||
lim x→0 ( | ) do potęgi | =[( | )∞] =[( | )∞] Może być coś takiego? | ||||
x | x2 | 0 | 0 |
sinx | ||
f(x) = ( | )1/x2 | |
x |
1 | sinx | |||
spróbuj policzyć limx→0 ln f(x) = limx→0 | *ln | = | ||
x2 | x |
| ln 1 | 0 | |||||||||||||
limx→0 | = [ | ] = [ | ] | ||||||||||||
x2 | 0 | 0 |
x | x*cos x − sin x | |||
= limx→0 [ | * | ] / 2x = | ||
sin x | x2 |
x*cos x − sin x | ||
limx→0 | = LH | |
2x2*sin x |
cos x − x*sin x − cosx | ||
limx→0 | = | |
2(2x*sinx + x2*cos x)) |
−x*sin x | ||
limx→0 | = | |
2x(2sin x + x*cosx |
1 | sin x | 1 | 0 | |||||
− | *limx→0 | = − | * | = 0 | ||||
2 | 2sinx + cos x | 2 | 2*0+1 |
1 | sin x | ||
( | − 1) →−1/6 | ||
x2 | x |