| sinx | 1 | sin0 | 0 | |||||
lim x→0 ( | ) do potęgi | =[( | )∞] =[( | )∞] Może być coś takiego? | ||||
| x | x2 | 0 | 0 |
| sinx | ||
f(x) = ( | )1/x2 | |
| x |
| 1 | sinx | |||
spróbuj policzyć limx→0 ln f(x) = limx→0 | *ln | = | ||
| x2 | x |
| ln 1 | 0 | |||||||||||||
limx→0 | = [ | ] = [ | ] | ||||||||||||
| x2 | 0 | 0 |
| x | x*cos x − sin x | |||
= limx→0 [ | * | ] / 2x = | ||
| sin x | x2 |
| x*cos x − sin x | ||
limx→0 | = LH | |
| 2x2*sin x |
| cos x − x*sin x − cosx | ||
limx→0 | = | |
| 2(2x*sinx + x2*cos x)) |
| −x*sin x | ||
limx→0 | = | |
| 2x(2sin x + x*cosx |
| 1 | sin x | 1 | 0 | |||||
− | *limx→0 | = − | * | = 0 | ||||
| 2 | 2sinx + cos x | 2 | 2*0+1 |
| 1 | sin x | ||
( | − 1) →−1/6 | ||
| x2 | x |