wartość funkcji
Wojtek: Podaj najmniejszą wartość funkcjif: R → R zdefiniowanej podanym wzorem.
f(x)=x4+2x2+2
24 sie 08:26
zxy:
fmin=f(0)=2
24 sie 08:29
Blee:
f(x) = x4 + 2x2 + 2 = x4 + 2x2 + 4 − 2 = (x2+2)2 − 2
fmin = f(0) = (0+2)2 −2 = 4 − 2 = 2
24 sie 10:16
24 sie 10:25
Jerzy:
To może jeszcze tak:
f'(x) = 4x3 + 4x = 4x(x2 + 1)
f'(x) = 0 ⇔ 4x(x2 + 1) = 0 ⇔ x = 0 ( możliwe ekstremum )
Zmiana znaku pochodnej z ujemnego na dodatni, a więc minimum.
24 sie 10:44