| √2 | √2 | |||
sinα−cosα= | /* | |||
| 2 | 2 |
| √2 | √2 | 1 | |||
*sinα− | cosα= | ||||
| 2 | 2 | 2 |
| π | π | 1 | ||||
sinα*cos | −sin | *cosα= | ||||
| 4 | 4 | 2 |
| π | 1 | |||
sin(α− | )= | |||
| 4 | 2 |
Jeżeli dałoby się to inaczej rozwiązać
| √2 | ||
sinα−cosα= | ||
| 2 |
| 1 | ||
sin2α−2sinαcosα+cos2α= | ||
| 2 |
| 1 | ||
1−2sinαcosα= | ||
| 2 |
| 1 | ||
2sinαcosα= | ||
| 2 |
| 1 | ||
sin2α= | ||
| 2 |
| π | ||
2α= | ||
| 6 |
| π | ||
α= | ||
| 12 |
| √6+√2 | ||
cosα= | ||
| 4 |

!
| √2 | ||
sinα=cosα+ | ||
| 2 |
| √2 | ||
cosα−sinα=− | ||
| 2 |
| π | √2 | |||
√2cos( | +α)=− | |||
| 4 | 2 |
| π | 1 | |||
cos( | +α)=− | |||
| 4 | 2 |
| π | π | π | π | ||||
+α= | +2kπ lub | +α=− | +2kπ, k∊C | ||||
| 4 | 3 | 4 | 3 |
| π | 7π | |||
α= | +2kπ lub α=− | +2kπ | ||
| 12 | 12 |
| π | ||
Skoro α∊(0; | ), to tylko dla k=0 mamy rozwiązanie i to jest 1 opcja. | |
| 2 |
| π | ||
α= | =15o | |
| 12 |
| 1 | ||
Z tego, że α jest kątem ostrym i sin2α= | wynika, że 2α=30° lub 2α=150°, a więc | |
| 2 |