| 1 | ||
W rombie cosinus kąta ostrego jest równy | , a suma długości przekątnych wynosi | |
| 4 |
| √15 | ||
to pole rombu : P=4√15*k2 = | [j2] | |
| 2 |
| √3 | ||
e2=a2+a2−2a2*(1/4) = (3/2)a2 ⇒e= | a | |
| √2 |
| √5 | ||
f2=a2+a2+2a2*(1/4)= (5/2)a2 ⇒f= | a | |
| √2 |
| √3+√5 | ||
e+f= √3+√5 = | a ⇒ a=√2 | |
| √2 |
| √15 | ||
P=a2*sinα , sinα=√1−cos2α= | ||
| 4 |
| √15 | √15 | |||
P= 2* | = | [j2] | ||
| 4 | 2 |