matematykaszkolna.pl
Równania kwadratowe z parametrem z. 2.266: Dla jakich wartości parametru m rozwiązania x1 , x2 równania 4 x2 − 15 x + 4 m2 = 0 spełniają warunek x1 = x22 ?
 36 36 
Zadanie łatwe, ale nie chce mi wyjść tak jak na odpowiedzi ( −

,

).
 4 4 
11 mar 18:01
Szwagier :): podstaw sobie odpowiedzi do równania i spróbuj je rozwiązać, wtedy sprawdź czy x1=x22 bo mi się wydaje, że te odpowiedzi są błędne, ale mogę się mylić, bo pobieżnie to rozwiązałem na kartce
11 mar 18:11
Szwagier :): a równanie po podstawieniu delty do x1=x22 i uproszczeniu wychodzi Ci takie: Δ+38Δ+105=0, gdzie Δ=225−64m2 ?
11 mar 18:17
karty do gry: Zakładajac, ze x1 , x2 − isteją w R wtedy dostajesz równanie :
 15 
x2 + x22 =

 4 
Rozwiązujesz je znajdziesz x2, z równości x1 = x22 znajdziesz x1 wartość parametru m wyliczysz z drugiego wzoru Viete'a
11 mar 18:24
Mila: 1) Δ=225−4*4*4m2>0
 15 15 
m∊(−

,

)
 8 8 
https://matematykaszkolna.pl/forum/220776.html
11 mar 18:31
adam: Podpowiedź: x=3/2, x=9/4
12 mar 07:16