1 | ||
∫e2x dx = | e2x+c | |
2 |
1 | ||
wystarczy podstawić pod 2x np. t, t=2x | dt=dx, chyba widzisz skąd to wychodzi | |
2 |
1 | ||
Zrób tak, abyś zrozumiał: 2x = t 2dx = dt , dx = | dt , | |
2 |
1 | 1 | 1 | ||||
po podstawieniu masz = | ∫etdt = | et = | e2x + C | |||
2 | 2 | 2 |
2 | 1 | |||
nie mogę dojść dalej niż − | arctgx− | [x2*ln(x2+1)−2∫xln(x2+1)dx] | ||
3 | 3 |
2x | ||
g(x)=ln(x2+1) g'(x)= | ||
1+x2 |
1 | ||
h(x)=arctgx h'(x)= | ||
1+x2 |
2 | 2 | x3 | 2 | |||||
∫2x2arctgxdx = arctgx* | x3− | ∫ | dx = arctgx* | x3− | ||||
3 | 3 | 1+x2 | 3 |
−2x | ||||
− | ∫2x + | dx | ||
3 | 1+x2 |
f'(x) | ||
∫ | dx = ln|f(x)|+c | |
f(x) |
1 | 2x | 1 | 2x | |||||
jak z − | ∫ | *x2dx jak powstało − | ∫2x− | dx | ||||
3 | 1+x2 | 3 | 1+x2 |
2x3 | 2x3+2x−2x | 2x | |||
= | =2x− | ||||
1+x2 | 1+x2 | 1+x2 |
xcosx | ||
∫ | dx | |
sin2x |
{1−x2}3/2 | ||||||||
to wyżej aktualne a ∫(1−x2)1/2dx= | ||||||||
|
xcosx | ||
∫ | dx | |
sin2x |
cosx | 1 | |||
∫ | dx = − | +c | ||
sin2x | sinx |
xcosx | x | 1 | ||||
∫ | dx=− | +∫ | dx | |||
sin2x | sinx | sinx |
1 | 2 | |||
∫ | dx, t=tg(x/2), dx= | dt | ||
sinx | 1+t2 |
1+t2 | 2 | 1 | ||||
∫ | * | dt = ∫ | dt = ln|tg(x/2)|+c | |||
2t | 1+t2 | t |
xcosx | x | |||
∫ | dx=− | +ln|tg(x/2)|+c | ||
sin2x | sinx |