matematykaszkolna.pl
komb Metis: Liczba naturalna jest podzielna przez 8 wtedy i tylko wtedy gdy trzy ostatnie cyfry tej liczby są zerami lub przedstawiają liczbę podzielną przez 8. Ile jest różnych liczb dziesięciocyfrowych podzielnych przez 8 , w których zapisie cyfra 0 występuje 5 razy, cyfra 2 cztery razy, a cyfra 4 tylko raz. 4ΔΔΔΔΔΔ000
 
nawias
4
nawias
nawias
1
nawias
 
Stawiam jeden raz 4
  
 
nawias
6
nawias
nawias
2
nawias
 
Stawiam dwa razy 0 bo 3 już są na
( 10−1−3)
  
 
nawias
4
nawias
nawias
4
nawias
 
Stawiam cztery razy 4 na
(10−1−3−2)
  
nawias
4
nawias
nawias
1
nawias
 
nawias
6
nawias
nawias
2
nawias
 
nawias
4
nawias
nawias
4
nawias
 
*
*
   
+ I mam problem z rozpatrzeniem: "trzy ostatnie cyfry przedstawiają liczbę podzielną przez 8"
16 kwi 21:03
Metis: + 4ΔΔΔΔΔΔ200 + 2ΔΔΔΔΔΔ240 + 2ΔΔΔΔΔΔ400
16 kwi 21:21
Metis: Jeszcze 224
16 kwi 21:26
Mila: Tam jest początek rozwiązania. https://matematykaszkolna.pl/forum/320539.html
16 kwi 21:33
Metis: A źle to robię bo chodzi o różne liczby, a nie te które w zapisie mają podane cyfryemotka
16 kwi 21:37
Metis: Mało przyjemne zadanie.
16 kwi 21:38
Mila: zostaw goemotka
16 kwi 22:48
Metis: Z próbnej matury emotka trochę przesadzili emotka
16 kwi 22:58
Kacper: Poza tym jest błąd w kluczu emotka
17 kwi 10:26
Metis: emotka
17 kwi 13:54