Wyznacz wspolrzedne srodka okregu opisanego na trojkacie ABC
bar: Wyznacz wspolrzedne srodka okregu opisanego na trojkacie ABC
zdjecie zadania
http://screenshooter.net/101712481/pcyuxwh
Ktoś może wyjaśnic jak to zrobic?
3 mar 20:10
Tadeusz:
... co... tak ciężko to tutaj narysować
Masz tam współrzędne punktów
3 mar 20:14
3 mar 20:16
Bbbc 00: środek okręgu opisanego to przecięcia symetralnych trójkąta:
I sposób:
I krok : trzeba znaleźć wzór na dwie symetralne
II krok: Rozwiązać układ równań (stworzony przez równań opisujących te 2 symetralne)
rozwiązanie tego układu jest środek tego okręgu.
wzór symetralnej = wzór prosta prostopadła do boku trójkąta przechodząca przez
środek tego boku.
UWAGA: łatwo się rozwiązuje, jeśli znać współrzędnych współrzędnych wierzchołków
tego trójkąta.
W tym rysunku łatwo określić wzór jedna z tych symetralnych : to symetralna do boku AB
najgorzej jest w tym zadaniu (BADA KONSTRUKCJI TEGO ZADANIA JEST
że musisz określić współrzędnych punktów A, B i C na PI RAZY OKU, bo podany odcinek
jednostkowe tzn. określone 1 na osi Y widać na rysunku i chyba 1 na osi 1; moje oceny
to zadanie otwarte niejasne). jeśli dobrze odczytamy z rysunku to A =(−1,0) ; a być może
jeśli dobrze odczytamy np. B = ( 3,0), oraz C= (2,3).
4 mar 04:59