| 3√7+x3−√3+x2 | ||
limx→1 | ||
| x−1 |
| 7+x3−23 | 4−(3+x2) | |||
= | + | |||
| 3√(7+x3)2+23√7+x3+22 | 2+√3+x2 |
| a2−b2 | a3−b3 | |||
(po drodze skorzystałem z (a−b)= | oraz (a−b)= | ) | ||
| a+b | a2+ab+b2 |
| x3−1 | 1−x2 | |||
= | + | |||
| 3√(7+x3)2+23√7+x3+22 | 2+√3+x2 |
| (x−1)(x2+x+1) | −(x−1)(x+1) | |||
= | + | |||
| 3√(7+x3)2+23√7+x3+22 | 2+√3+x2 |
| (x2+x+1) | −(x+1) | |||
= | + | |||
| 3√(7+x3)2+23√7+x3+22 | 2+√3+x2 |
| 1+1+1 | −2 | |||
= | + | |||
| 3√(7+1)2+23√7+1+4 | 2+√3+1 |
| 3 | −2 | |||
= | + | |||
| 3√64+23√8+4 | 2+√4 |
| 3 | −2 | |||
= | + | |||
| 4+2*2+4 | 2+2 |
| 3 | −1 | |||
= | + | |||
| 12 | 2 |
| 1 | 1 | |||
= | − | |||
| 4 | 2 |
| 1 | 2 | |||
= | − | |||
| 4 | 4 |
| 1 | ||
=− | ||
| 4 |