π | ||
3x = | + k * π | |
2 |
π | π | |||
x = | + k * | ∧ k ∊ C. | ||
6 | 3 |
π | ||
sinx+sin( | −x)=1 | |
2 |
|
| |||||||||||||||||||||
2sin | *cos | =1 | ||||||||||||||||||||
2 | 2 |
π | π | |||
2sin | *cos(x− | )=1 | ||
4 | 4 |
√2 | π | |||
2* | *cos(x− | )=1 | ||
2 | 4 |
π | ||
√2*cos(x− | )=1 /:√2 | |
4 |
π | √2 | |||
cos(x− | )= | ⇔ | ||
4 | 2 |
π | π | π | π | |||||
x− | = | +2kπ lub x− | =− | +2kπ⇔ | ||||
4 | 4 | 4 | 4 |
π | ||
x= | +2kπ lub x=2kπ | |
2 |
x+3x | x−3x | |||
2*cos | *sin | +sin(2x)=0 | ||
2 | 2 |
x+2x | 3x | x | ||||
x=kπ lub −2sin | *sin(x−2x}{2}=0⇔sin | =0 lub sin(− | )=0 | |||
2 | 2 | 2 |
3x | x | |||
x=kπ lub | =kπ lub | =kπ | ||
2 | 2 |
2kπ | ||
x=kπ lub x= | lub x=2kπ | |
3 |
2kπ | ||
x=kπ lub x= | ||
3 |
π | ||
zatem x= 2kπ lub x= | =2kπ , k∊C | |
2 |
π | ||
Poprawiam chochlika : ...lub x= | +2kπ | |
2 |
sin60o | ||
sinx + √3cosx = 2, √3 = | ||
cos60o |
sin60o | ||
sinx + | cosx = 2 /*cos60o | |
cos60o |
5^2 | 52 |
2^{10} | 210 |
a_2 | a2 |
a_{25} | a25 |
p{2} | √2 |
p{81} | √81 |
Kliknij po więcej przykładów | |
---|---|
Twój nick | |