matematykaszkolna.pl
funkcje? iii: Czy istnienieje jakiś tw. w którym występuje coś podobnego f*g=f+g ?
27 maj 22:20
vaultboy: Najlepiej byłoby jakbyś wrzucił zadanie lub zagadnienie z którym masz problem.
27 maj 22:28
Przemysław: Mi się skojarzyło coś takiego: (f*g)'=fg'+gf'
27 maj 22:33
Bogdan: ale Przemysławie autor nie pyta o zapis z f' i g', ale z f i g
27 maj 23:07
Bogdan: rysunek
 g 
fg − f = g ⇒ f(g − 1) = g ⇒ f =

 g − 1 
Mamy tu do czynienia z proporcją odwrotną dla g≠1
27 maj 23:11
Przemysław: Autor pytał o coś podobnego. Napisałem, że mi się skojarzyło (a czy f' czy f to już kwestia symboli). Ale oki, przepraszam za spam
27 maj 23:13
Przemysław: A zresztą jak już spamuję, to co się będę hamował Bogdan gdybyś mi z tym pomógł, to byłym wdzięcznyemotka https://matematykaszkolna.pl/forum/294188.html
27 maj 23:19
pigor: ..., a dla mnie to istnieje taka funkcja f(x)=logpx, że logp(ab)= logpa+logpb oczywiście przy odpowiednich założeniach (jakich ?). ...emotka
27 maj 23:32
ICSP: Równania funkcyjne Cauchego ?
27 maj 23:35
Ada: hmm... ale tu chodzi ci o to, czy jest takie działanie zdefiniowane, czy pytanie o istnienie (ewentualne szukanie takich funkcji?) PS Mi się to strasznie ze splotem przez znaczek kojarzy emotka
27 maj 23:45
Bogdan: To pigorze jest inny przypadek, u Ciebie f = logpa, g = logpb, ale wtedy chodziłoby o zapis logba * logpb = ogba + logpb
27 maj 23:46
Bogdan: Tu http://www-users.mat.umk.pl/~anow/ps-dvi/si-krl-p.pdf jest ciekawy materiał o liczbach naturalnych, których suma równa się iloczynowi.
28 maj 11:55